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Abstract The multi-machine scheduling problems with
job-dependent and machine-dependent learning effects are
proposed in this paper. Since it is almost impossible to
obtain the analytic results for this complicated multi-machine
scheduling problems with learning effects, four heuristic
algorithms are used to solve this newly proposed model,
where the variants of well-known genetic algorithm (GA),
simulated annealing (SA), ant colony optimization (ACO)
and particle swarm optimization (PSO) are coded in the com-
mercial software MATLAB. The objective is to minimize
the makespan of this new model. For this kind of scheduling
problem, the numerical experiments show that the GA and
SA outperform ACO and PSO.

Keywords Scheduling problems - Genetic algorithm -
Simulated annealing - Ant colony optimization - Particle
swarm optimization - Learning effects

Introduction

The learning effects in scheduling problems have been widely
studied recently. The main reasons come from the fact that
the same kind of jobs will be repeatedly processed and the
employees or workers can improve their skills after doing the
same task for a long time.

To the best of our knowledge, the scheduling problems
with learning effects coming from machines was seemingly
not proposed in the literature. In practical situation, the
different machines might own the different learning rates.
In this paper, we consider the n-job and m-machine flow

P-J. Lai - H.-C. Wu (X))

Department of Mathematics, National Kaohsiung Normal University,
Kaohsiung 802, Taiwan

e-mail: hcwu@nknucc.nknu.edu.tw

shop scheduling problems. The learning factors come from
jobs and machines will be included simultaneously in the
scheduling problem. Therefore, we can consider three kinds
of scheduling problems with learning effects. Firstly, we may
assume that only the job-dependent learning factor is taken
into account in this problem; that is, the learning factor comes
from machines will be ignored. This problem was considered
by Moshieov and Sidney (2003). Secondly, suppose that only
the machine-dependent learning factor is taken into account
in this problem; that is, the learning factor comes from jobs
will be ignored. Thirdly, in the general case, we shall con-
sider the job-dependent and machine-dependent learning fac-
tors simultaneously. This kind of problem is really compli-
cated such that it is almost impossible to obtain the analytic
results. In this paper, we apply four heuristic algorithms that
are genetic algorithm (GA), simulated annealing (SA), ant
colony optimization (ACO) and particle swarm optimization
(PSO) to minimize the makespan of this problem.

This paper is organized as follows. In second section,
we provide the brief review for the scheduling problems
with learning effects. In third section, we introduce the new
models that simultaneously consider the job-dependent and
machine-dependent learning effects. In fourth section, we
introduce four heuristic algorithms that will be used to solve
the scheduling problems with job-dependent and machine-
dependent learning effects. In fifth section, we provide the
numerical experiments in order to minimize the makespan of
this newly proposed model.

Review for scheduling problems with learning effects
We briefly review the frequently adopted scheduling prob-

lems with learning effects in the literature. Of course, the
analytic results can be obtained for the single-machine prob-
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lems. The multi-machine scheduling problems with learning
effects were seldom studied in the literature due to its com-
plication, where the machine-dependent learning effects was
also not considered. In other words, considering the machine-
dependent learning effects will increase the complication of
this kind of problem. Therefore, we can use the heuristic
algorithms to solve this kind of new problem.

Single-machine scheduling problems

Suppose that there are n jobs available at time zero. We denote
by p; the normal processing time of job i. Because of the
learning effects, the actual processing times of the later jobs
in a schedule are smaller than their normal processing times.
Therefore, Biskup (1999) proposed that the actual processing
time of job i, when it is scheduled at the rth position in the
schedule, can be given by

pirzpi'ra» (1)

where @ < 0 is the learning index. This can also be inter-
preted as the position-dependent learning effects.

Wang and Xia (2005) proposed that the actual processing
time p;, can be given by

pir = pi - (B —ar), (2)
where 8 and o denote a constant number and a learning ratio,
respectively.

Koulamas and Kyparisis (2007) assumed that the actual
processing time p;, can be given by

r—1 o n o
=1 Plk —r Plk
pir:l,i.(l_M) =pi.(M) A

ZZ:I Dk ZZ:I Dk

where pj;) denotes the normal processing time occupying the
kth position in the schedule and o > 1.

The volume-dependent processing time can also affect the
learning effects. The learning effects on the processing time
of a job were assumed to depend on the number of jobs that
are processed before the current job. Cheng and Wang (2000)
proposed that the actual processing time p; of job i can be
modelled as follows:

pi = pi — a; - min{n;, no;} 4

fori = 1,...,n, where «; is the learning coefficient, n; is
a nonnegative integer with 0 < n; < n — 1 indicating the
number of jobs processed before job i in the schedule (i.e.,
n;+ 1 is the position of job i), and ng; is a nonnegative integer
with ng; < n — 1 indicating a threshold value.

Another volume-dependent learning effects based on the
job processing times were also considered by Kuo and Yang
(2006¢,b). Since the employees or workers can learn more
if they perform a job with a longer processing time; that is,
the actual processing time of a job is affected by the total

@ Springer

processing time of the previous jobs, they proposed that the
actual processing times can be given by

Pi ifr=1
o : 5
bir <(P[1] +po+-+peD®opi ifr =2, )
or
Pi ifr =1
ir = . 6
Pir [(1+P|11+p[21+-~+p|r1)°"pi itr =2, ©

where o < 0is alearning index, and p[;] denotes the normal
processing time occupying the kth position in the schedule.
The learning effects presented in (1), (2) and (3) are
job-independent. However, in the realistic situations, the
improvement in the production process of some jobs may
be faster than that of others, or the different jobs are affected
depending on their positions in the schedule. Therefore, it
is reasonable to study the scheduling problem with job-
dependent learning effects. Moshieov and Sidney (2003) pro-
posed that the actual processing time p;, can be given by

pir = pi -1, @)

where «; is a job-dependent negative parameter. Bachman
and Janiak (2004) also introduced the actual processing time
pir that can be given by

Pir = Pi — i, ®)

where «; denotes a learning ratio.

Cheng et al. (2008) took the product of the models
proposed by Biskup (1999) and Koulamas and Kyparisis
(2007), respectively, to introduce a model that considered the
position-based and sum-of-processing-timed-based learning
effects in which the actual processing time of a job is a func-
tion of the total normal processing times of the jobs already
processed and of the job’s scheduled position with the form
given by

r—1 ai
piry=pi-\1- —an:l D) e,
Zk:l Pk

The model proposed by Lee and Wu (2009) generalized the
model of Kuo and Yang (2006b), which is given by

r—1 a
Pitr] = Pi - (q(r) +> P[k]) : ©)

k=1

Yin et al. (2009) also generalized the model proposed by
Cheng et al. (2008), which is given by

r—1
pitr = pi - f (Z P[k]) - g(r),
k=1

where the functions f and g satisfy some suitable conditions.
Recently, based on the model of Yin et al. (2009) and Lai and
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Lee (2011) proposed a more general model given by

r—1
Pilr] = Pi - f(Z,Bk * PIk]» V),
k=1

where the function f with two arguments satisfies some suit-
able conditions.

The goal of unrestricted common due date problem is
to jointly minimize the weighted earliness, tardiness and
completion time. Here the unrestricted common due date
d is regarded as a decision variable whose value is going
to be determined. Let C;, E; = max{0,d — C;} and T; =
max{0, C; — d} be the completion time, earliness and tardi-
ness of job i, respectively. We also denote by w;, wy and
w3 the per time unit penalties for earliness, tardiness and the
completion time, respectively. Then we shall find a schedule
7 that minimizes the following objective function:

(11

flr) = Z(W]Ei + waT; + w3Cy).

i=1

12)

By introducing the leaning effects in (1), Biskup (1999)
showed that the unrestricted common due date problem can
be solved as an assignment problem which takes O (n3) time.
In other words, the unrestricted common due date problem
with learning effects is polynomially solvable. Moshieov
(2001) considered the following objective function

fld,m) =" (wid +wrE; + wiTy) (13)

i=1
with learning effect given in (7) and the objective function in
(13). Also, the corresponding assignment problem is solved
to obtain the optimal schedule.
Using the standard pair-wise interchange arguments, the
following results were obtained.

e Moshieov (2001) showed that the makespan minimization
problem with learning effects given in (1) can be optimized
by the SPT rule.

e Wang and Xia (2005) showed that the makespan mini-
mization problem with learning effects given in (2) can be
optimized by the SPT rule.

e Koulamas and Kyparisis (2007) showed that the makespan
minimization problem with learning effects given in (3)
can be optimized by the SPT rule.

On the other hand, Bachman and Janiak (2004) showed
that the makespan minimization problem with learning
effects given in (1) can be solved in O(n?) times by an
assigning procedure, and the optimal schedule considering
the learning effects given in (8) can be found in O(nlogn)
times by sequencing jobs in nondecreasing order of the learn-
ing ratio «;. Moshieov and Sidney (2003) considered the

learning effects given in (7). Kuo and Yang (2006c) consid-
ered the learning effects presented in (5) and shows that the
optimal schedule that minimizes the makespan satisfies the
following condition: the sequence of all jobs except for the
first processed job is the smallest processing time first (SPT
rule). Bachman and Janiak (2004) showed that the problems
1¢i, pir = pi — &ir|Cmax and 1|¢;, pir = pi - r%|Cmax are
strongly NP-hard.

One of the elementary results of single-machine schedul-
ing problem is that the sum of flowtimes of all jobs is min-
imized by sequencing the jobs according to the SPT rule.
Incorporating the learning effects into this problem, the fol-
lowing results were obtained.

e Biskup (1999) showed that the total completion time min-
imization problem with learning effects given in (1) is
optimized by the SPT order.

e Wang and Xia (2005) showed that the total completion
time minimization problem with learning effects given in
(2) is optimized by the SPT rule.

e Koulamas and Kyparisis (2007) showed that the total
completion time minimization problem with learning
effects given in (3) is optimized by the SPT rule.

e Kuo and Yang (2006b) showed that the total completion
time minimization problem with learning effects given in
(5) is optimized by the SPT rule.

Using the job interchanging technique, Bachman and Janiak
(2004) also proved many interesting results.

Moshieov and Sidney (2003) considered the learning
effects given in (7). On the other hand, Wu (2006) used the
branch-and-bound method to minimize the total weighted
completion time under the learning effects given in (1). The
objective is to find an optimal schedule 7z* such that

n n
Z w;Ci (™) < z w; C;i ()
i=1 i=1

for any schedule 7, where w; are positive real numbers for
i=1,...,n.

Let d; be the due date of job i. The lateness is defined
by L; = C; — d;. The maximum lateness is defined as
Lmax = max{Ly, ..., L,}. The objective is to minimize the
maximum lateness Lnx. It is well-known that the conven-
tional maximum lateness minimization problem is solvable
by the earliest due date rule (EDD rule). However, Cheng
and Wang (2000) showed that, under the consideration of
learning effects given in (4), this problem becomes NP-hard
in strong sense. Cheng and Wang (2000) also showed that,
although the general problem is NP-hard in the strong sense,
there are two special cases that can be solved in polynomial
time. Let d denote the common due date and U; be a 0-1
variable, where U; = 1 if job i is late, i.e., C; > d, and
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U; = 0O otherwise, i.e., C; < d. Moshieov and Sidney (2005)
also considered the single-machine scheduling problem to
minimize the number of tardy jobs.

We denote by T7C = >/, C; the total completion time
and by TADC = >7i_ >7i_; ICi — C;]| the total absolute
differences in completion times. Let § € [0, 1]. The objective
is to find a schedule that minimizes the following measure

f(@)y=6-TC+(1—-06)-TADC.

Moshieov (2001) considered the learning effects specified
in (1) and obtain the optimal schedule by solving its cor-
responding assignment problem. Under the learning effects
given in (1), Lee et al. (2004) used the branch-and-bound
algorithm to find a schedule that minimizes the some of total
completion time and the maximum tardiness, i.e., to find a
schedule that minimizes the following objective function

min A - TC(w) + (1 — L) - Tnax (),

where 0 < A < 1, TC() = >}, Ci() is the total com-
pletion time and Tyax () is the maximum tardiness of a
schedule .

Suppose that there are n jobs to be classified into m groups
and to be processed on a single machine. All jobs are available
at time zero. It is assumed that there is no setup time between
any two consecutive jobs in the same group. However, the
group setup times are required. The group setup times are
assumed to be sequence-independent. Moreover, the normal
processing time of a job is incurred if the job is scheduled
first in a sequence of a certain group. Let J;; denote the jth
jobin group G; and p;j, be the actual processing time of J;;
that is scheduled in the rth position in a sequence in group
G;. Kuo and Yang (2006a) considered the time-dependent
learning effects defined by

pijr = (L+ pipiy + -+ + pipr—1D" pij, (14)

where «; is a constant learning index in a certain group
Gi, pij is the normal processing time of J;; in the origi-
nal sequence and p; ) is the normal processing time of J; ]
that is scheduled in the kth position in a sequence in group
G;.

For the scheduling problems with deteriorating jobs, the
actual processing time of a job in a schedule is modeled as an
increasing function of its starting time due to deterioration
effects. This model reflects a variety of real-life situations
such as steel production, resource allocation, fire fighting,
maintenance or cleaning, in which any delay in processing a
job may result in an increasing effort to accomplish the job.
In order to obtain the analytic results, most researchers model
the actual processing time of a job as a linear or piecewise
linear increasing function of its starting time. For example,
the actual processing time can be assumed as p; + f;¢, where
pi is the normal processing time, f; is the growth rate of the
processing time, and ¢ is the starting time, of job i. Wang and

@ Springer

Cheng (2007) incorporated the learning effects into this kind
of problem. If job i is scheduled in position r in a sequence,
then its actual processing time is given by

pir(t) = (po + Bit) - r%,

where po is a common normal processing time which is
incurred if job i is scheduled first in a sequence, 7 is the start-
ing time of job i to be processed, f; is the growth rate of the
processing time of job i, which is the amount of increase in
the processing time of job i per unit delay in its starting time
due to the deterioration effects, and « is the learning index.
On the other hand, Lee (2004) and Wang (2007) also incorpo-
rated the learning effects into the scheduling problems with
deteriorating jobs. If job i is started at time ¢ and scheduled
in position r in a sequence, then the actual processing time
is given by

pir(®) = pi - (@) + B - 1),

where ¢(¢) is an increasing function.

15)

Multi-machine scheduling problems

Suppose that there are n jobs to be processed on two
machines, where each job requires to be processed on
machine 1 first and then on machine 2. We denote by «; and
b; the normal processing times of job i on machine 1 and 2,
respectively. For the job-position-based learning effects, Lee
and Wu (2004) and Wu et al. (2007) proposed that the actual
processing times can be given by

(16)

air = a4 r¢ and b; = b; -r®

with o < 0. Thus the completion time of job scheduled in
the rth position is given by

,
Ciry = max { > agj1- j* Cr—y t + by - 1%
j=1

Under the learning effects given in (16), Wu et al. (2007)
provided a heuristic algorithm using the SA approach to min-
imize the maximum tardiness, and Lee and Wu (2004) used
the branch-and-bound algorithm to minimize the total com-
pletion time.

On the other hand, Koulamas and Kyparisis (2007) pro-
posed that the actual processing times can be given by

r—1 o
air = a; -(1 . %) and by, = b; -
k=1

_ o
- > bk
Zk:] b

which o > 1. Two special cases that are called ordered job
processing times and proportional job processing times are
also investigated.

7
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For the problem of ordered job processing times, we
assume a; < b; for all jobs i = 1,...,n and b; < by
whenever a; < g for any two jobs j and k. In this case,
the problem is denoted by F2|LE, ord|y (i), where y is
an objective function. For the problem of proportional job
processing times, we assume b; = ca; for all jobs i =
1,...,n, where ¢ > 1 is a constant factor. In this case, the
problem is denoted by F2|LE, prp|y (7). Under these set-
tings, Koulamas and Kyparisis (2007) also obtained many
interesting results.

For the n-job and m-machine scheduling problems with
learning effects, we denote by p;; the normal processing time
of job i on machine j and p;;, the actual processing time of
job i on machine j that is scheduled in position ». Wang and
Xia (2005) proposed two models that are given by
pijr = pij - (B —ar) and p;j, = pij - r® (18)
fori,r =1,...,nand j = 1,...,m, where B is a constant
number and « is a learning index. It is assumed that 8 is
a positive integer. Since the processing time is positive, for
model (18), itis also assumed that 8 — (n + 1) - o > O.

For the problem Fm|| Y C;, Gonzalez and Sahni (1978)
provided an approximation algorithm in order of increas-
ing L; = 37 pij and show that it has worst-case per-
formance ratio, i.e., this algorithm is guaranteed to pro-
duce a schedule with cost no more than m times the cost
of an optimal schedule. This heuristic algorithm will also
be referred as SPT rule. Therefore, Wang and Xia (2005)
used the SPT rule in order of L; as an approximate algo-
rithm for the problem Fm|p;;, = pij - (B — ar)] > C;,and
obtained some interesting results. Wang and Xia (2005) also
used the SPT rule as an approximate algorithm to problem
Fm|pijr = pij - (B — ar)|Cmax, and obtained some other
interesting results.

Parallel machine scheduling problems

The parallel machine scheduling with learning effect was
studied by Moshieov (2001). We firstly consider n jobs to be
processed on m parallel identical machines. We assume that
m < n.Jobs are numbered such that p; < pr < --- < p,.
With no learning effects, the problem Pm||Cpax is known to
be NP-hard even for two machines. Clearly, for the learning
effects given in (1), the problem Pm|p;r = p; - r*|Cmax
is also NP-hard, since the special case ¢ = 0 is iden-
tical with the conventional version. However, minimizing
flow time on parallel identical machines, i.e., Pm|| > C;,
is solved by the SPT rule. When learning effect in (1) is
assumed, Moshieov (2001) showed that an optimal schedule
for Pm|pir = pi - r*| > C; consists of SPT sequences on
each machine. The problem that 7 jobs are to be processed on
m unrelated parallel machines was also studied by Moshieov

and Sidney (2003) by formulating it as an assignment prob-
lem.

Multi-machine scheduling problems with learning
effects

Now, we shall consider the n-job and m-machine flow shop
scheduling problems with learning effects. Given n jobs and
m machines, each job consists of m operations. The mth oper-
ation of each job has to be processed on the mth machine.
The (m + 1)th operation starts only if the mth operation has
been completed. Each machine is assumed to process one
operation at a time with no precedence constraints between
jobs. Operations are non-preemptive and are available for
processing at time 0 on machine 1. Let p;; be the normal
processing time for job i on machine j, i = 1,...,n and
j =1,..., m. In this paper, the learning factors come from
jobs and machines will be included in the scheduling prob-
lem. Therefore, we can consider three kinds of scheduling
problems with learning effects.

Job-dependent learning effects

Suppose that only the job-dependent learning factor is taken
into account in this problem; that is, the learning factor comes
from machines will be ignored. We denote by §; the job-
dependent parameter for jobi = 1, ..., n, where §; are neg-
ative real numbers. Then the actual processing time of job i
on machine j scheduled in position r is given by

pijr = pij - 1. (19)

This problem was considered by Moshieov and Sidney
(2003).

Machine-dependent learning effects

Suppose that only the machine-dependent learning factor is
taken into account in this problem; that is, the learning fac-
tor comes from jobs will be ignored. We denote by 7n; the
machine-dependent parameter for machine j = 1,...,m,
where n; are negative real numbers. Then the actual process-
ing time of job i on machine j scheduled in position r is
given by

pijr = pij - r'. (20)
To the best of our knowledge, this problem has not been
investigated in scheduling problems with learning effects.
Job-dependent and machine-dependent learning effects

In the general case, we shall consider the job-dependent
and machine-dependent learning factors simultaneously. We
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denote by A;; the job-machine-dependent parameter for job
i on machine j, where ;; are negative real numbers. Then
the actual processing time of job i on machine j scheduled
in position r is given by

Pijr = pij - 1. 1)

For example, we may take A;; = 8; + n;. This problem has
also not been investigated in this research field so far.

For convenient discussions, Egs. (19), (20) and (21) are
unified as the following formula

pijr = pij -, (22)

where ¢;; is a learning factor defined below:

8; if only the job-dependent learning effects
are considered

n; if only the machine-dependent learning
effects are considered

Ajj if the job-dependent and machine-dependent
learning effects are considered.

Gij =

(23)

Design of heuristic algorithms

We shall use four different heuristic algorithms that are SA,
GA, ACO, and PSO to search for the “best solution” of the
scheduling problems proposed in this paper. All of the algo-
rithms adopted in this paper are also based on the concept
of random keys proposed by Bean (1994) to generate the
individuals.

Simulated annealing

The idea of SA algorithm arises from the physical anneal-
ing of solids, and it has been successfully applied to com-
binatorial problems by Kirkpatrick et al. (1983). SA has the
advantage that it can avoid be trapped in a local optimum
by occasionally allowing “hill-climbing moves”. This algo-
rithm, although it was invented long time ago, still works
very well and very efficiently in many problems up to now.
In literature, it is often used to compare with other more
fashioned heuristic algorithms. In this paper, we adopt the
standard type of SA algorithm. The reader can refer to Kirk-
patrick et al. (1983) for the main steps of this algorithm.
Nearchou (2004) and Mirsanei et al. (2011) used SA to solve
some other scheduling problems.

Genetic algorithms
GA has a lot of formulation in literature. The main steps

adopted in this paper are the elitism, uniform crossover, and
immigration. We shall randomly generate N chromosomes
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in the initial population, and use the concept of random
keys proposed by Bean (1994) to generate the chromosomes.
Suppose that we consider the five-job problem. Then the
length of chromosome will be five. Therefore, we gener-
ate five random numbers in (0, 1) for each chromosome.
The mapping to the job sequence is accomplished by sorting
the random numbers and sequencing the jobs in ascending
order. For example, if we have obtained the random num-
bers (0.46,0.91,0.33,0.75,0.51), ie., 1 <« 0.46,2 —
091, 3 < 0.33, 4 < 0.75 and 5 — 0.51, then it would
represent the chromosome (job sequence) (3,1,5,4,2), since
0.33 < 0.46 < 0.51 < 0.75 < 0.91.

For the crossover, we are going to invoke the parame-
terized uniform crossover proposed by Speras and DeJong
(1991). Suppose that two chromosomes (0.46, 0.91, 0.33,
0.75,0.51) and (0.84, 0.32, 0.64, 0.04, 0.48) are chosen ran-
domly from the old population. At each gene, we toss a faired
coin to select which parent will contribute the allele. We can
also consider the biased coin to perform this crossover. For
example, the probability of tossing a head may take as 0.7.
In this paper, we take the probability of tossing a head as 0.5.
Now we assume that a coin toss of head selects the allele
from the first parent, and a tail chooses the allele from the
second parent, which forms the first offspring. The second
offspring is obtained in the reverse way as obtaining the first
offspring. We provide a simple example given below:

Coin toss T H T H T

Parent 1 0.46 091 0.33 0.75 0.51
Paremt 2 0.84 0.32 0.64 0.04 048
Offspring 1 0.84 0.91 0.64 0.75 0.48
Offspring2 0.46 0.32 0.33 0.04 0.51

Then the two offsprings can be obtained by sorting the ran-
dom numbers and sequencing the jobs in ascending order.

Instead of performing mutation, we employ the concept
of immigration in this paper. In other words, at each gener-
ation, more new members of the population are randomly
generated from the same distribution. In this paper, we
take the uniform (0,1) random variate. The stopping crite-
rion will be determined by specifying the maximal genera-
tion.

Finally, the reproduction is accomplished by using the
elitist strategy. We choose the best chromosomes (e.g., 10 %
of the population size) from one generation to the next. The
elitist strategy is frequently adopted by different variants of
GA:s.

Now we briefly describe the entire evolution procedure.
Let P; be the family of chromosomes in the rth genera-
tion, and |P;| denote the population size of P;. The next
generation is made of a% best chromosomes from P;, b%
chromosomes for taking crossovers, and ¢% chromosomes
generated randomly (i.e., performing immigration), where
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a + b + ¢ = 100. The computational procedure is described
as below:

e Step 1. Initialize the population by generating the random
numbers.

e Step 2. Calculate the completion time of every job in
each schedule selected from the population.

e Step 3. Calculate the fitness function f () for each
schedule .

e Step 4. Choose a - 0.01 - | P;| best chromosomes as the
members in the next generation.

e Step 5. Choose b - 0.01 - | P;| chromosomes to perform
crossover and produce the members in the next genera-
tion.

e Step 6. Randomly generate ¢ - 0.01 - | P;| chromosomes
as the members in the next generation like performing
immigration.

e Step 7. Save the best schedule and fitness value obtained
so far.

e Step 8. If the maximal generation is reached, then STOP,
otherwise go to Step 2. to perform another iteration.

Ant colony optimization

The ACO proposed by Dorigo and Stiitzle (2004) has also
been recognized as an efficient algorithm to solve the com-
binatorial optimization problem. Therefore, a lot of different
variants of ACO have been proposed based on the differ-
ent purposes of combinatorial optimization problems. For
example, Lai and Wu (2009) used one of the variants to
solve the scheduling problems with fuzzy-valued process-
ing times. Also, Arnaout et al. (2010) and Solano-Charris
et al. (2011) used the ACO to solve some other scheduling
problems.

The main steps adopted in this paper will be described
below. The probability, currently at node i, for choosing next
node j is given by

(k) _ Tij
Pij = <o
ZIEN(k) Til

i

if j e N®, (24)

where Nl.(k) is the neighborhood of node i except for the
predecessor of node i when ant k is staying at node i, and 7;;
denotes the amount of pheromone currently deposited in the
edge (i, j).

Dorigo and Stiitzle (2004) modified the random propor-
tional rule and proposed a so-called pseudo-random propor-
tional rule that is given below: when an ant k is now located
at city i, it moves to a city j according to the following
rule

(25)

: argmax,_,® Tl ifg < qo
J = { .
J otherwise,

where ¢ is a random number, go € [0, 1] is a parameter, and
J is a random variable selected according to the probability
distribution given by (24).

Only the best-so-far tour is allowed to deposit the
pheromone after each iteration. Therefore, the pheromone
update rule for the tour 7 is given by

zj < (1= p) - 1ij +p - AT (26)

for the edge (i, j) in T®, where Atl.(}’s) is given by

N if edge (i, j)isin T®
1(Crnax)

A fl.(};)s) =
0 otherwise

27)

for some constant « in R.

In addition to the global pheromone update rule in (26),
Dorigo and Stiitzle (2004) also suggested a local pheromone
update rule that will be applied after all K ants having finished
the tour construction. For edge (i, j) in some tour 7} that is
constructed by ant k, the update rule is given by

7j < (1 =8)1; +§ - 70, (28)

where £ € (0, 1) and ¢ is set to be the initial pheromone.
Now, the computational procedure is summarized below.

e Step 1. Initialize K artificial ant tours by randomly gen-
erating the random numbers in {1, ..., n}.

e Step 2. Initialize the pheromone trails by depositing a
constant value p on all edges.

e Step 3. Construct the artificial ant tours according to the
rule presented in (25).

e Step 4. Evaluate the objective function values of sched-
ules determined by the artificial ant tours.

e Step 5. Perform the local pheromone trails updating rule
according to (28).

e Step 6. Identify the best-so-far tour.

e Step 7. Perform the global pheromone trails updating rule
according to (26).

e Step 8. If the pre-determined maximal iteration is
reached, then STOP and return the “optimal schedule”;
otherwise we go to Step 4 to perform another iteration.

Particle swarm optimization

The PSO has also been used to solve the scheduling prob-
lems by referring to Tasgetiren et al. (2007) and the refer-
ences therein. The PSO is based on the social interaction
and communication such as bird flocking and fish school-
ing. The PSO is different from other evolutionary methods
in a way that it does not use the filtering operation, e.g.,
crossover, mutation and so on. The members of the entire
population are maintained through the search procedure so
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that the information can be socially shared among individ-
uals to conduct the search direction towards the best posi-
tion in the search space. The PSO was originally introduced
by Eberhard and Kennedy (1995). Tasgetiren et al. (2007)
introduced the smallest position value (SPV) rule borrowed
from the random key representation in Bean (1994) to con-
vert the continuous position value to a discrete job permuta-
tion.

The main steps adopted in this paper will be described
below. In the initial population, every particle is a list of n
random numbers between 0 and 1, where 7 is the job number.
The SPV rule applies to each particle to find its corresponding
permutation. The ith particle in the 7th generation is denoted
as
X0 = (5958, .. x2).

The initial continuous position values of the particle is pro-
duced randomly:

0
Xij~ = Xmin + (Xmax — Xmin) " 71
where xmin = 0, xmax = 4 and r; is a uniform random
number between 0 and 1. Initial velocities are established in

a similar way:

)
Vij~ = VUmin + (Vmax — Umin) * 72
where vmin = —4, Vmax = 4 and r; is a uniform random

number between 0 and 1. We denote by

(1) @ (1) (1)
P = (pil ’pi2""’pin)

the personal best particle in the #th generation which is ini-

tialized by p,.((l)) = x,.(?) for 1 <i < n.We also denote by

G = (g g, 8l")

the global best particle in the ¢th generation which is initial-
ized as the best particle in the initial population.

The inertia weight needs to be updated according to the
following rule

w® = =D . g

where 8 = 0.975 is the decrement factor and w(? is set to be
0.9 and never decreases below 0.4. The velocity is updated
according to the following rule

vi(]t') =D ey (Pi(]t‘_l) - xi(]['_l))

ij
+co 19 (g;t_l) — xg_l))

where c1 and ¢2 are acceleration coefficients set to be 2, and
r1 and r2 are uniform random numbers between 0 and 1.
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Finally, the position is updated according to the following
rule

(" _

(=D
ij =X

(1)
X ij +vij.

Now, the computational procedure is summarized below.

Step 1. Initialization and evaluation.

Step 2. Update iteration counter.

Step 3. Update inertia weight.

Step 4. Update velocity

Step 5. Update position

Step 6. Evaluation

Step 7. Update personal best

Step 8. Update global best

Step 9. If the stopping criterion is satisfied then stop.
Otherwise go to STEP 2.

Numerical examples

We consider n-job and m-machine flow shop scheduling
problem. Recall that Cy,; is the completion time of job J;
on machine j. We denote by C, the completion time of job
Ji,ie.,Cy. = C,, which means the completion time on the
last machine. We sometimes simply write C; as the comple-
tion time of job i. Now the makespan Cy,y is defined as the
last job to leave the system, i.e., Cpax = max {Cy, ..., Cp,}.
In other words, we see that Cnax = Cj,,n. The purpose is
to minimize the makespan. Therefore, we want to solve the
following problem

min () = Chax-
mwell

Now, we are in a position to perform the computational
experiments. All of the algorithms are coded in the com-
mercial software MATLAB and are executed in a personal
computer with Intel(R)Core(TM)2 6300 1.86, 1.87 GHz and
1.99 GB RAM on Windows XP. We test the proposed algo-
rithms on flowshop scheduling problem with job-dependent
and machine-dependent learning effects. We consider three
machines and three different numbers of jobs n = 20, n =
50 and n = 100.

Choosing the values of parameters is time-consuming and
experience-depending. We first determine the range of pos-
sible values of each parameter based on the previous expe-
rience or well-known adoption in literature. For example,
the ranges of parameters of GA and ASO refer to Lai and
Wu (2008, 2009), and the ranges of parameters of PSO are
adapted from Tasgetiren et al. (2007). Also, we still have to
make preliminary trial among such ranges by testing different
values for every parameter in order to determine the best suit
among them. When the best fitness does not improve for 10
generations, the algorithm is stopped, which is the stopping
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criterion adopted in this paper. Now, the values of parameters
are shown below.

(i) For the different job sizes, we take the same values of
parameters of ACS, which are listed below: generation
number is 300, population size is 200, p is 0.2, & is
0.6, pseudo-random number is 0.8, « is 40, and initial
pheromone is 0.005.

(ii) For the different job sizes, we take the same values of
parameters of GA, which are listed below: generation
number is 2,000, population size is 500, crossover rate
is 0.8, elitist rate is 0.1, and mutate rate is 0.1.

(iii) The values of parameters of PSO are listed below.

e job numbers n = 20: generation number is 1,000,
population size is 500, the acceleration coefficient is
2.5, initial inertial weight is 0.8, and the decrement
factor is 0.975.

e job numbers n = 50 and n = 100: generation num-
ber is 2,000, population size is 500, the acceleration
coefficient is 2.5, initial inertial weight is 0.8, and the
decrement factor is 0.975.

(iv) The values of parameters of SA are listed below.

e job numbers n = 20: generation number is 10, 000,
L =0.1and
__ current iteration number

generation number

e jobnumbersn = 50andn = 100: generation number
is 100000, L = 0.1 and

N current iteration number

generation number

For each case of different job size, a set of 20 instances of
job processing times associated with the job-dependent and
machine-dependent learning indices are randomly generated.

e The job processing time on machines 1, 2 and 3 are gen-
erated from the uniform distribution between the integers
1 and 50.

e The job-dependent and machine-dependent learning
indices are generated from the uniform distributions
between —0.2 and 0.

Because the heuristic algorithms are kind of random search,
each instance is run 5 times. We present the best one among
5 times and the mean of them. For each heuristic algo-
rithm, we execute 20 experiments. The average CPU time
for 20 experiments is reported. Now, the experimental results
are shown in the following tables, where the CPU time
is reported in average with second as unit for all experi-
ments.

Job numbers 20
Experiments ACO GA PSO SA

Mean Min Mean Min Mean Min Mean Min
Exp.1 586 581 578 578 583 579 585 579
Exp.2 605 605 603 603 604 603 604 604
Exp.3 550 548 542 542 543 542 542 542
Exp.4 617 616 612 612 613 612 612 612
Exp.5 494 490 480 480 482 481 481 480
Exp.6 576 570 565 565 565 565 565 565
Exp.7 518 517 513 513 515 514 515 514
Exp.8 549 548 546 546 547 546 546 546
Exp.9 514 512 498 498 500 499 498 498
Exp.10 518 516 499 499 503 501 500 499
Exp.11 530 529 524 524 528 524 524 524
Exp.12 525 522 494 494 501 495 494 494
Exp.13 502 501 499 499 499 499 499 499
Exp.14 440 440 436 435 436 435 436 436
Exp.15 517 516 511 511 511 511 511 511
Exp.16 542 540 531 531 533 531 532 531
Exp.17 572 571 564 564 56 564 564 564
Exp.18 583 579 555 555 557 556 556 556
Exp.19 516 515 514 514 515 514 514 514
Exp.20 521 520 518 518 520 519 519 519
Average CPU 44.4 38.3626 36.9812 0.6532
time (s)
Job numbers 50
Experiments ACO GA PSO SA

Mean Min Mean Min Mean Min Mean Min
Exp.1 1,048 1,042 1,011 1,010 1,018 1,013 1,011 1,011
Exp.2 1,076 1,073 1,057 057 1,064 1,063 1,057 1,057
Exp.3 1,064 1,054 1,021 1,019 1,029 1,025 1,019 1,019
Exp.4 1,075 1,066 1,037 1,037 1,045 1,038 1,034 1,034
Exp.5 1,038 1,034 1,004 1,004 1,008 1,006 1,005 1,005
Exp.6 1,095 1,085 1,055 1,055 1,064 1,062 1,062 1,055
Exp.7 926 924 894 893 903 899 894 893
Exp.8 1,123 1,111 1,087 1,087 1,091 1,089 1,088 1,088
Exp.9 977 970 936 936 945 939 935 934
Exp.10 1,063 1,053 1,033 1,033 1,040 1,037 1,033 1,033
Exp.11 1,003 998 972 971 977 975 972 972
Exp.12 1,038 1,036 1,013 1,013 1,019 1,015 1,014 1,014
Exp.13 1,121 1,115 1,078 1,077 1,084 1,081 1,078 1,078
Exp.14 1,173 1,163 1,123 1,122 1,131 1,127 1,130 1,123
Exp.15 1,087 1,079 1,060 1,060 1,064 1,062 1,062 1,061
Exp.16 1,157 1,153 1,131 1,128 1,141 1,138 1,131 1,128
Exp.17 1,063 1,060 1,044 1,043 1,050 1,047 1,043 1,042
Exp.18 1,011 1,005 980 978 991 986 977 977
Exp.19 1,002 995 969 969 975 969 970 969
Exp.20 974 971 950 949 955 952 951 949
Average CPU 152.2905 94.6624 94.772 10.25
time (s)
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Job numbers 100

Experiments ACO GA PSO SA

Mean Min Mean Min Mean Min Mean Min
Exp.1 2,019 2,010 1,961 1,960 1,982 1,968 1,961 1,961
Exp.2 1,843 1,838 1,782 1,785 1,803 1,795 1,785 1,785
Exp.3 1,896 1,889 1,844 1843 1,865 1,860 1,847 1,841
Exp.4 1,992 1,988 1,921 1,921 1,945 1,941 1,920 1,920
Exp.5 1,751 1,744 1,685 1,683 1,708 1,701 1,689 1,681
Exp.6 1,944 1936 1,864 1,863 1,883 1,878 1,864 1,862
Exp.7 1,817 1,809 1,747 1,745 1,766 1,756 1,741 1,738
Exp.8 2,080 2,073 2,028 2,027 2,053 2,042 2,034 2,028
Exp.9 1,995 1,992 1,915 1,913 1939 1,928 1,915 1914
Exp.10 1,776 1,771 1,722 1,721 1,742 1,735 1,720 1,718
Exp.11 1,820 1,812 1,753 1,751 1,775 1,768 1,751 1,750
Exp.12 1,745 1,735 1,673 1,671 1,697 1,691 1,670 1,670
Exp.13 1,872 1,857 1,815 1,814 1,832 1,827 1,814 1,814
Exp.14 1,807 1,794 1,748 1,748 1,769 1,756 1,748 1,745
Exp.15 1,751 1,742 1,688 1,685 1,710 1,699 1,684 1,684
Exp.16 1,965 1,961 1,902 1,901 1918 1,906 1,902 19,02
Exp.17 1,947 1,943 1,900 1,899 1917 1,909 1,908 1,900
Exp.18 1,876 1,871 1,812 1,811 1,829 1,822 1,812 1,811
Exp.19 1,832 1,829 1,781 1,778 1,794 1,791 1,780 1,779
Exp.20 1,779 1,764 1,718 1,716 1,736 1,727 1,718 1,715
Average CPU 449.0344 1,90.6218 190.8124 16.8968
time (s)

The experiments show that the GA outperforms the other
heuristic algorithms for the job sizes of 20 and 50. How-
ever, for the job size of 100, the SA shows the best results in
the search domain. Because the searched results of heuris-
tic algorithms depend heavily on the initial values of para-
meters and the types of problems, the performance for the
different heuristic algorithms presented in this paper cannot
apply to the other combinatorial optimization problems. In
other words, the efficiency of different heuristic algorithms
is problem-dependent.

Conclusion

The main purpose of this paper is to propose a new model
for the multi-machine scheduling problems by simultane-
ously considering the job-dependent and machine-dependent
learning factors. Since this general problem is really compli-
cated, we solve it by using four popular heuristic algorithms
in literature, which are SA, GA, ACO and PSO etc.

The scheduling problems considered in this paper always
assume that the resources are available and there is no
deadlock issue. This may not be sensible in the reality.
Owing to the competition for limited resources among sev-
eral processes, the entire system might get stuck at deadlock.
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For this issue, we may refer to Hu and Li (2009a,b,c, 2010)
and Hu et al. (2011). Therefore, in the future research, we
can consider the scheduling problems with deadlock issue.

Lee (2004), Toksari and Giiner (2010), Wang (2007),
Wang and Cheng (2007) and Wu et al. (2012) simultane-
ously considered the deteriorating jobs and learning effects
in scheduling problems. In the future research, we can also
study the multi-machine scheduling problems by simul-
taneously considering the deteriorating jobs and the job-
dependent and machine-dependent learning factors. We can
also impose the job-dependent and machine-dependent learn-
ing factors upon the different models reviewed in second sec-
tion in the future research. These considerations may be the
challenge topic.

On the other hand, in the future research, it is also pos-
sible to propose different variants of the prototype of the
multi-machine scheduling problems with job-dependent and
machine-dependent learning effects in third section. For
example, we may study the job-dependent and machine-
dependent learning factors upon the sum-of-processing-time
based problems. More precisely, we can extend (9) to the
following formula

r—1 Sij
pijin =pij {4+ D pwr |
k=1

where ¢;; is defined in (23). We can also extend (10) to the
following formula

r—1
pijin = pij - fi | D P ) - i ().
k=1

(29)

where the functions f;; and g;; satisfy some suitable condi-
tions, and play the same roles as parameter ¢;;. In general,
we can extend (11) to the following formula

r—1
pijirni = pij - fi | D B puar )
k=1
which also generalizes the setting in (29).

As we have mentioned before, the multi-machine schedul-
ing problems by simultaneously considering the job-depe-
ndent and machine-dependent learning factors proposed in
this paper is complicated. In the future research, we shall
also develop some other more efficient heuristic algorithms
to solve this complicated problem.
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