
Dear Author,

Here are the proofs of your article.

• You can submit your corrections online, via e-mail or by fax.

• For online submission please insert your corrections in the online correction form. Always
indicate the line number to which the correction refers.

• You can also insert your corrections in the proof PDF and email the annotated PDF.

• For fax submission, please ensure that your corrections are clearly legible. Use a fine black
pen and write the correction in the margin, not too close to the edge of the page.

• Remember to note the journal title, article number, and your name when sending your
response via e-mail or fax.

• Check the metadata sheet to make sure that the header information, especially author names
and the corresponding affiliations are correctly shown.

• Check the questions that may have arisen during copy editing and insert your answers/
corrections.

• Check that the text is complete and that all figures, tables and their legends are included. Also
check the accuracy of special characters, equations, and electronic supplementary material if
applicable. If necessary refer to the Edited manuscript.

• The publication of inaccurate data such as dosages and units can have serious consequences.
Please take particular care that all such details are correct.

• Please do not make changes that involve only matters of style. We have generally introduced
forms that follow the journal’s style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not
allowed without the approval of the responsible editor. In such a case, please contact the
Editorial Office and return his/her consent together with the proof.

• If we do not receive your corrections within 48 hours, we will send you a reminder.

• Your article will be published Online First approximately one week after receipt of your
corrected proofs. This is the official first publication citable with the DOI. Further changes
are, therefore, not possible.

• The printed version will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the
complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free
alert service. For registration and further information go to: http://www.springerlink.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be
returned to you on special request. When you return your corrections, please inform us if you would
like to have these documents returned.

Metadata of the article that will be visualized in OnlineFirst

ArticleTitle Using heuristic algorithms to solve the scheduling problems with job-dependent and machine-dependent
learning effects

Article Sub-Title

Article CopyRight Springer Science+Business Media New York
(This will be the copyright line in the final PDF)

Journal Name Journal of Intelligent Manufacturing

Corresponding Author Family Name Wu
Particle

Given Name Hsien-Chung
Suffix

Division Department of Mathematics

Organization National Kaohsiung Normal University

Address Kaohsiung , 802, Taiwan

Email hcwu@nknucc.nknu.edu.tw

Author Family Name Lai
Particle

Given Name Peng-Jen
Suffix

Division Department of Mathematics

Organization National Kaohsiung Normal University

Address Kaohsiung , 802, Taiwan

Email

Schedule

Received 13 February 2013

Revised

Accepted 8 August 2013

Abstract The multi-machine scheduling problems with job-dependent and machine-dependent learning effects are
proposed in this paper. Since it is almost impossible to obtain the analytic results for this complicated multi-
machine scheduling problems with learning effects, four heuristic algorithms are used to solve this newly
proposed model, where the variants of well-known genetic algorithm (GA), simulated annealing (SA), ant
colony optimization (ACO) and particle swarm optimization (PSO) are coded in the commercial software
MATLAB. The objective is to minimize the makespan of this new model. For this kind of scheduling problem,
the numerical experiments show that the GA and SA outperform ACO and PSO.

Keywords (separated by '-') Scheduling problems - Genetic algorithm - Simulated annealing - Ant colony optimization - Particle swarm
optimization - Learning effects

Footnote Information

Author Query Form

Please ensure you fill out your response to the queries raised below

and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please

check your typeset proof carefully against the queries listed below and mark the

necessary changes either directly on the proof/online grid or in the ‘Author’s response’

area provided below

Query Details required Author’s response

1. Kindly check and confirm the edit in the

paragraph ‘This paper is organized as

follows...’ in page 2 of the manuscript.

2. Please provide a definition for the

significance of bold in the inline tables.

3. References citation ‘Lee et al., Kennedy

and Eberhart, Spears and DeJong’ have

been changed to ‘Lee and Wu, Eberhard

and Kennedy, Speras and DeJong’.

Please check and change accordingly.

Journal: 10845

Article: 827

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

DOI 10.1007/s10845-013-0827-x

Using heuristic algorithms to solve the scheduling problems

with job-dependent and machine-dependent learning effects

Peng-Jen Lai · Hsien-Chung Wu

Received: 13 February 2013 / Accepted: 8 August 2013

© Springer Science+Business Media New York 2013

Abstract The multi-machine scheduling problems with1

job-dependent and machine-dependent learning effects are2

proposed in this paper. Since it is almost impossible to3

obtain the analytic results for this complicated multi-machine4

scheduling problems with learning effects, four heuristic5

algorithms are used to solve this newly proposed model,6

where the variants of well-known genetic algorithm (GA),7

simulated annealing (SA), ant colony optimization (ACO)8

and particle swarm optimization (PSO) are coded in the com-9

mercial software MATLAB. The objective is to minimize10

the makespan of this new model. For this kind of scheduling11

problem, the numerical experiments show that the GA and12

SA outperform ACO and PSO.13

Keywords Scheduling problems · Genetic algorithm ·14

Simulated annealing · Ant colony optimization · Particle15

swarm optimization · Learning effects16

Introduction17

The learning effects in scheduling problems have been widely18

studied recently. The main reasons come from the fact that19

the same kind of jobs will be repeatedly processed and the20

employees or workers can improve their skills after doing the21

same task for a long time.22

To the best of our knowledge, the scheduling problems23

with learning effects coming from machines was seemingly24

not proposed in the literature. In practical situation, the25

different machines might own the different learning rates.26

In this paper, we consider the n-job and m-machine flow27

P.-J. Lai · H.-C. Wu (B)

Department of Mathematics, National Kaohsiung Normal University,

Kaohsiung 802, Taiwan

e-mail: hcwu@nknucc.nknu.edu.tw

shop scheduling problems. The learning factors come from 28

jobs and machines will be included simultaneously in the 29

scheduling problem. Therefore, we can consider three kinds 30

of scheduling problems with learning effects. Firstly, we may 31

assume that only the job-dependent learning factor is taken 32

into account in this problem; that is, the learning factor comes 33

from machines will be ignored. This problem was considered 34

by Moshieov and Sidney (2003). Secondly, suppose that only 35

the machine-dependent learning factor is taken into account 36

in this problem; that is, the learning factor comes from jobs 37

will be ignored. Thirdly, in the general case, we shall con- 38

sider the job-dependent and machine-dependent learning fac- 39

tors simultaneously. This kind of problem is really compli- 40

cated such that it is almost impossible to obtain the analytic 41

results. In this paper, we apply four heuristic algorithms that 42

are genetic algorithm (GA), simulated annealing (SA), ant 43

colony optimization (ACO) and particle swarm optimization 44

(PSO) to minimize the makespan of this problem. 45

This paper is organized as follows. In second section, 46

we provide the brief review for the scheduling problems 47

with learning effects. In third section, we introduce the new 48

models that simultaneously consider the job-dependent and 49

machine-dependent learning effects. In fourth section, we 50

introduce four heuristic algorithms that will be used to solve 51

the scheduling problems with job-dependent and machine- 52

dependent learning effects. In fifth section, we provide the 53

numerical experiments in order to minimize the makespan of 54

this newly proposed model. 55

Review for scheduling problems with learning effects 56

We briefly review the frequently adopted scheduling prob- 57

lems with learning effects in the literature. Of course, the 58

analytic results can be obtained for the single-machine prob- 59

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

lems. The multi-machine scheduling problems with learning60

effects were seldom studied in the literature due to its com-61

plication, where the machine-dependent learning effects was62

also not considered. In other words, considering the machine-63

dependent learning effects will increase the complication of64

this kind of problem. Therefore, we can use the heuristic65

algorithms to solve this kind of new problem.66

Single-machine scheduling problems67

Suppose that there are n jobs available at time zero. We denote68

by pi the normal processing time of job i . Because of the69

learning effects, the actual processing times of the later jobs70

in a schedule are smaller than their normal processing times.71

Therefore, Biskup (1999) proposed that the actual processing72

time of job i , when it is scheduled at the r th position in the73

schedule, can be given by74

pir = pi · rα, (1)75

where α ≤ 0 is the learning index. This can also be inter-76

preted as the position-dependent learning effects.77

Wang and Xia (2005) proposed that the actual processing78

time pir can be given by79

pir = pi · (β − αr), (2)80

where β and α denote a constant number and a learning ratio,81

respectively.82

Koulamas and Kyparisis (2007) assumed that the actual83

processing time pir can be given by84

pir = pi ·

(

1 −

∑r−1
k=1 p[k]

∑n
k=1 pk

)α

= pi ·

(
∑n

k=r p[k]
∑n

k=1 pk

)α

, (3)85

where p[k] denotes the normal processing time occupying the86

kth position in the schedule and α ≥ 1.87

The volume-dependent processing time can also affect the88

learning effects. The learning effects on the processing time89

of a job were assumed to depend on the number of jobs that90

are processed before the current job. Cheng and Wang (2000)91

proposed that the actual processing time p̂i of job i can be92

modelled as follows:93

p̂i = pi − αi · min{ni , n0i } (4)94

for i = 1, . . . , n, where αi is the learning coefficient, ni is95

a nonnegative integer with 0 ≤ ni ≤ n − 1 indicating the96

number of jobs processed before job i in the schedule (i.e.,97

ni +1 is the position of job i), and n0i is a nonnegative integer98

with n0i ≤ n − 1 indicating a threshold value.99

Another volume-dependent learning effects based on the100

job processing times were also considered by Kuo and Yang101

(2006c,b). Since the employees or workers can learn more102

if they perform a job with a longer processing time; that is,103

the actual processing time of a job is affected by the total104

processing time of the previous jobs, they proposed that the 105

actual processing times can be given by 106

pir =

{

pi if r = 1

(p[1] + p[2] + · · · + p[r])
α · pi if r ≥ 2,

(5) 107

or 108

pir =

{

pi ifr = 1

(1 + p[1] + p[2] + · · · + p[r])
α · pi ifr ≥ 2,

(6) 109

where α ≤ 0 is a learning index, and p[k] denotes the normal 110

processing time occupying the kth position in the schedule. 111

The learning effects presented in (1), (2) and (3) are 112

job-independent. However, in the realistic situations, the 113

improvement in the production process of some jobs may 114

be faster than that of others, or the different jobs are affected 115

depending on their positions in the schedule. Therefore, it 116

is reasonable to study the scheduling problem with job- 117

dependent learning effects. Moshieov and Sidney (2003) pro- 118

posed that the actual processing time pir can be given by 119

pir = pi · rαi , (7) 120

where αi is a job-dependent negative parameter. Bachman 121

and Janiak (2004) also introduced the actual processing time 122

pir that can be given by 123

pir = pi − αir, (8) 124

where αi denotes a learning ratio. 125

Cheng et al. (2008) took the product of the models 126

proposed by Biskup (1999) and Koulamas and Kyparisis 127

(2007), respectively, to introduce a model that considered the 128

position-based and sum-of-processing-timed-based learning 129

effects in which the actual processing time of a job is a func- 130

tion of the total normal processing times of the jobs already 131

processed and of the job’s scheduled position with the form 132

given by 133

pi[r] = pi ·

(

1 −

∑r−1
k=1 p[k]

∑n
k=1 pk

)a1

· ra2 . 134

The model proposed by Lee and Wu (2009) generalized the 135

model of Kuo and Yang (2006b), which is given by 136

pi[r] = pi ·

(

q(r) +

r−1
∑

k=1

p[k]

)a

. (9) 137

Yin et al. (2009) also generalized the model proposed by 138

Cheng et al. (2008), which is given by 139

pi[r] = pi · f

(

r−1
∑

k=1

p[k]

)

· g(r), (10) 140

where the functions f and g satisfy some suitable conditions. 141

Recently, based on the model of Yin et al. (2009) and Lai and 142

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

Lee (2011) proposed a more general model given by143

pi[r] = pi · f

(

r−1
∑

k=1

βk · p[k], r

)

, (11)144

where the function f with two arguments satisfies some suit-145

able conditions.146

The goal of unrestricted common due date problem is147

to jointly minimize the weighted earliness, tardiness and148

completion time. Here the unrestricted common due date149

d is regarded as a decision variable whose value is going150

to be determined. Let Ci , Ei = max{0, d − Ci } and Ti =151

max{0, Ci − d} be the completion time, earliness and tardi-152

ness of job i , respectively. We also denote by w1, w2 and153

w3 the per time unit penalties for earliness, tardiness and the154

completion time, respectively. Then we shall find a schedule155

π that minimizes the following objective function:156

f (π) =

n
∑

i=1

(w1 Ei + w2Ti + w3Ci). (12)157

By introducing the leaning effects in (1), Biskup (1999)158

showed that the unrestricted common due date problem can159

be solved as an assignment problem which takes O(n3) time.160

In other words, the unrestricted common due date problem161

with learning effects is polynomially solvable. Moshieov162

(2001) considered the following objective function163

f (d, π) =

n
∑

i=1

(w1d + w2 Ei + w3Ti) (13)164

with learning effect given in (7) and the objective function in165

(13). Also, the corresponding assignment problem is solved166

to obtain the optimal schedule.167

Using the standard pair-wise interchange arguments, the168

following results were obtained.169

• Moshieov (2001) showed that the makespan minimization170

problem with learning effects given in (1) can be optimized171

by the SPT rule.172

• Wang and Xia (2005) showed that the makespan mini-173

mization problem with learning effects given in (2) can be174

optimized by the SPT rule.175

• Koulamas and Kyparisis (2007) showed that the makespan176

minimization problem with learning effects given in (3)177

can be optimized by the SPT rule.178

On the other hand, Bachman and Janiak (2004) showed179

that the makespan minimization problem with learning180

effects given in (1) can be solved in O(n3) times by an181

assigning procedure, and the optimal schedule considering182

the learning effects given in (8) can be found in O(n log n)183

times by sequencing jobs in nondecreasing order of the learn-184

ing ratio αi . Moshieov and Sidney (2003) considered the185

learning effects given in (7). Kuo and Yang (2006c) consid- 186

ered the learning effects presented in (5) and shows that the 187

optimal schedule that minimizes the makespan satisfies the 188

following condition: the sequence of all jobs except for the 189

first processed job is the smallest processing time first (SPT 190

rule). Bachman and Janiak (2004) showed that the problems 191

1|ζi , pir = pi − αir |Cmax and 1|ζi , pir = pi · rα|Cmax are 192

strongly NP-hard. 193

One of the elementary results of single-machine schedul- 194

ing problem is that the sum of flowtimes of all jobs is min- 195

imized by sequencing the jobs according to the SPT rule. 196

Incorporating the learning effects into this problem, the fol- 197

lowing results were obtained. 198

• Biskup (1999) showed that the total completion time min- 199

imization problem with learning effects given in (1) is 200

optimized by the SPT order. 201

• Wang and Xia (2005) showed that the total completion 202

time minimization problem with learning effects given in 203

(2) is optimized by the SPT rule. 204

• Koulamas and Kyparisis (2007) showed that the total 205

completion time minimization problem with learning 206

effects given in (3) is optimized by the SPT rule. 207

• Kuo and Yang (2006b) showed that the total completion 208

time minimization problem with learning effects given in 209

(5) is optimized by the SPT rule. 210

Using the job interchanging technique, Bachman and Janiak 211

(2004) also proved many interesting results. 212

Moshieov and Sidney (2003) considered the learning 213

effects given in (7). On the other hand, Wu (2006) used the 214

branch-and-bound method to minimize the total weighted 215

completion time under the learning effects given in (1). The 216

objective is to find an optimal schedule π∗ such that 217

n
∑

i=1

wi Ci (π
∗) ≤

n
∑

i=1

wi Ci (π) 218

for any schedule π , where wi are positive real numbers for 219

i = 1, . . . , n. 220

Let di be the due date of job i . The lateness is defined 221

by L i = Ci − di . The maximum lateness is defined as 222

Lmax = max{L1, . . . , Ln}. The objective is to minimize the 223

maximum lateness Lmax. It is well-known that the conven- 224

tional maximum lateness minimization problem is solvable 225

by the earliest due date rule (EDD rule). However, Cheng 226

and Wang (2000) showed that, under the consideration of 227

learning effects given in (4), this problem becomes NP-hard 228

in strong sense. Cheng and Wang (2000) also showed that, 229

although the general problem is NP-hard in the strong sense, 230

there are two special cases that can be solved in polynomial 231

time. Let d denote the common due date and Ui be a 0–1 232

variable, where Ui = 1 if job i is late, i.e., Ci > d, and 233

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

Ui = 0 otherwise, i.e., Ci ≤ d. Moshieov and Sidney (2005)234

also considered the single-machine scheduling problem to235

minimize the number of tardy jobs.236

We denote by T C =
∑n

i=1 Ci the total completion time237

and by T ADC =
∑n

i=1

∑n
j=1 |Ci − C j | the total absolute238

differences in completion times. Let δ ∈ [0, 1]. The objective239

is to find a schedule that minimizes the following measure240

f (π) = δ · T C + (1 − δ) · T ADC.241

Moshieov (2001) considered the learning effects specified242

in (1) and obtain the optimal schedule by solving its cor-243

responding assignment problem. Under the learning effects244

given in (1), Lee et al. (2004) used the branch-and-bound245

algorithm to find a schedule that minimizes the some of total246

completion time and the maximum tardiness, i.e., to find a247

schedule that minimizes the following objective function248

min λ · T C(π) + (1 − λ) · Tmax(π),249

where 0 < λ < 1, T C(π) =
∑n

i=1 Ci (π) is the total com-250

pletion time and Tmax(π) is the maximum tardiness of a251

schedule π .252

Suppose that there are n jobs to be classified into m groups253

and to be processed on a single machine. All jobs are available254

at time zero. It is assumed that there is no setup time between255

any two consecutive jobs in the same group. However, the256

group setup times are required. The group setup times are257

assumed to be sequence-independent. Moreover, the normal258

processing time of a job is incurred if the job is scheduled259

first in a sequence of a certain group. Let Ji j denote the j th260

job in group Gi and pi jr be the actual processing time of Ji j261

that is scheduled in the r th position in a sequence in group262

Gi . Kuo and Yang (2006a) considered the time-dependent263

learning effects defined by264

pi jr = (1 + pi[1] + · · · + pi[r−1])
αi pi j , (14)265

where αi is a constant learning index in a certain group266

Gi , pi j is the normal processing time of Ji j in the origi-267

nal sequence and pi[k] is the normal processing time of Ji[k]268

that is scheduled in the kth position in a sequence in group269

Gi .270

For the scheduling problems with deteriorating jobs, the271

actual processing time of a job in a schedule is modeled as an272

increasing function of its starting time due to deterioration273

effects. This model reflects a variety of real-life situations274

such as steel production, resource allocation, fire fighting,275

maintenance or cleaning, in which any delay in processing a276

job may result in an increasing effort to accomplish the job.277

In order to obtain the analytic results, most researchers model278

the actual processing time of a job as a linear or piecewise279

linear increasing function of its starting time. For example,280

the actual processing time can be assumed as pi +βi t , where281

pi is the normal processing time, βi is the growth rate of the282

processing time, and t is the starting time, of job i . Wang and283

Cheng (2007) incorporated the learning effects into this kind 284

of problem. If job i is scheduled in position r in a sequence, 285

then its actual processing time is given by 286

pir (t) = (p0 + βi t) · rα, (15) 287

where p0 is a common normal processing time which is 288

incurred if job i is scheduled first in a sequence, t is the start- 289

ing time of job i to be processed, βi is the growth rate of the 290

processing time of job i , which is the amount of increase in 291

the processing time of job i per unit delay in its starting time 292

due to the deterioration effects, and α is the learning index. 293

On the other hand, Lee (2004) and Wang (2007) also incorpo- 294

rated the learning effects into the scheduling problems with 295

deteriorating jobs. If job i is started at time t and scheduled 296

in position r in a sequence, then the actual processing time 297

is given by 298

pir (t) = pi · (ζ(t) + β · rα), 299

where ζ(t) is an increasing function. 300

Multi-machine scheduling problems 301

Suppose that there are n jobs to be processed on two 302

machines, where each job requires to be processed on 303

machine 1 first and then on machine 2. We denote by ai and 304

bi the normal processing times of job i on machine 1 and 2, 305

respectively. For the job-position-based learning effects, Lee 306

and Wu (2004) and Wu et al. (2007) proposed that the actual 307

processing times can be given by 308

air = ai · rα and bir = bi · rα (16) 309

with α < 0. Thus the completion time of job scheduled in 310

the r th position is given by 311

C[r] = max

⎧

⎨

⎩

r
∑

j=1

a[j] · jα, C[r−1]

⎫

⎬

⎭

+ b[r] · rα. 312

Under the learning effects given in (16), Wu et al. (2007) 313

provided a heuristic algorithm using the SA approach to min- 314

imize the maximum tardiness, and Lee and Wu (2004) used 315

the branch-and-bound algorithm to minimize the total com- 316

pletion time. 317

On the other hand, Koulamas and Kyparisis (2007) pro- 318

posed that the actual processing times can be given by 319

air = ai ·

(

1 −

∑r−1
k=1 a[k]

∑

k=1 ak

)α

and bir = bi · 320

(

1 −

∑r−1
k=1 b[k]

∑

k=1 bk

)α

(17) 321

which α ≥ 1. Two special cases that are called ordered job 322

processing times and proportional job processing times are 323

also investigated. 324

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

For the problem of ordered job processing times, we325

assume ai ≤ bi for all jobs i = 1, . . . , n and b j ≤ bk326

whenever a j ≤ ak for any two jobs j and k. In this case,327

the problem is denoted by F2|L E, ord|γ (π), where γ is328

an objective function. For the problem of proportional job329

processing times, we assume bi = cai for all jobs i =330

1, . . . , n, where c ≥ 1 is a constant factor. In this case, the331

problem is denoted by F2|L E, pr p|γ (π). Under these set-332

tings, Koulamas and Kyparisis (2007) also obtained many333

interesting results.334

For the n-job and m-machine scheduling problems with335

learning effects, we denote by pi j the normal processing time336

of job i on machine j and pi jr the actual processing time of337

job i on machine j that is scheduled in position r . Wang and338

Xia (2005) proposed two models that are given by339

pi jr = pi j · (β − αr) and pi jr = pi j · rα (18)340

for i, r = 1, . . . , n and j = 1, . . . , m, where β is a constant341

number and α is a learning index. It is assumed that β is342

a positive integer. Since the processing time is positive, for343

model (18), it is also assumed that β − (n + 1) · α > 0.344

For the problem Fm||
∑

Ci , Gonzalez and Sahni (1978)345

provided an approximation algorithm in order of increas-346

ing L i =
∑m

j=1 pi j and show that it has worst-case per-347

formance ratio, i.e., this algorithm is guaranteed to pro-348

duce a schedule with cost no more than m times the cost349

of an optimal schedule. This heuristic algorithm will also350

be referred as SPT rule. Therefore, Wang and Xia (2005)351

used the SPT rule in order of L i as an approximate algo-352

rithm for the problem Fm|pi jr = pi j · (β − αr)|
∑

Ci , and353

obtained some interesting results. Wang and Xia (2005) also354

used the SPT rule as an approximate algorithm to problem355

Fm|pi jr = pi j · (β − αr)|Cmax, and obtained some other356

interesting results.357

Parallel machine scheduling problems358

The parallel machine scheduling with learning effect was359

studied by Moshieov (2001). We firstly consider n jobs to be360

processed on m parallel identical machines. We assume that361

m < n. Jobs are numbered such that p1 ≤ p2 ≤ · · · ≤ pn .362

With no learning effects, the problem Pm||Cmax is known to363

be NP-hard even for two machines. Clearly, for the learning364

effects given in (1), the problem Pm|pir = pi · rα|Cmax365

is also NP-hard, since the special case α = 0 is iden-366

tical with the conventional version. However, minimizing367

flow time on parallel identical machines, i.e., Pm||
∑

Ci ,368

is solved by the SPT rule. When learning effect in (1) is369

assumed, Moshieov (2001) showed that an optimal schedule370

for Pm|pir = pi · rα|
∑

Ci consists of SPT sequences on371

each machine. The problem that n jobs are to be processed on372

m unrelated parallel machines was also studied by Moshieov373

and Sidney (2003) by formulating it as an assignment prob- 374

lem. 375

Multi-machine scheduling problems with learning 376

effects 377

Now, we shall consider the n-job and m-machine flow shop 378

scheduling problems with learning effects. Given n jobs and 379

m machines, each job consists of m operations. The mth oper- 380

ation of each job has to be processed on the mth machine. 381

The (m + 1)th operation starts only if the mth operation has 382

been completed. Each machine is assumed to process one 383

operation at a time with no precedence constraints between 384

jobs. Operations are non-preemptive and are available for 385

processing at time 0 on machine 1. Let pi j be the normal 386

processing time for job i on machine j, i = 1, . . . , n and 387

j = 1, . . . , m. In this paper, the learning factors come from 388

jobs and machines will be included in the scheduling prob- 389

lem. Therefore, we can consider three kinds of scheduling 390

problems with learning effects. 391

Job-dependent learning effects 392

Suppose that only the job-dependent learning factor is taken 393

into account in this problem; that is, the learning factor comes 394

from machines will be ignored. We denote by δi the job- 395

dependent parameter for job i = 1, . . . , n, where δi are neg- 396

ative real numbers. Then the actual processing time of job i 397

on machine j scheduled in position r is given by 398

pi jr = pi j · r δi . (19) 399

This problem was considered by Moshieov and Sidney 400

(2003). 401

Machine-dependent learning effects 402

Suppose that only the machine-dependent learning factor is 403

taken into account in this problem; that is, the learning fac- 404

tor comes from jobs will be ignored. We denote by η j the 405

machine-dependent parameter for machine j = 1, . . . , m, 406

where ηi are negative real numbers. Then the actual process- 407

ing time of job i on machine j scheduled in position r is 408

given by 409

pi jr = pi j · rη j . (20) 410

To the best of our knowledge, this problem has not been 411

investigated in scheduling problems with learning effects. 412

Job-dependent and machine-dependent learning effects 413

In the general case, we shall consider the job-dependent 414

and machine-dependent learning factors simultaneously. We 415

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

denote by λi j the job-machine-dependent parameter for job416

i on machine j , where λi j are negative real numbers. Then417

the actual processing time of job i on machine j scheduled418

in position r is given by419

pi jr = pi j · rλi j . (21)420

For example, we may take λi j = δi + η j . This problem has421

also not been investigated in this research field so far.422

For convenient discussions, Eqs. (19), (20) and (21) are423

unified as the following formula424

pi jr = pi j · r ζi j , (22)425

where ζi j is a learning factor defined below:426

ζi j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

δi if only the job-dependent learning effects

are considered

η j if only the machine-dependent learning

effects are considered

λi j if the job-dependent and machine-dependent

learning effects are considered.

427

(23)428

Design of heuristic algorithms429

We shall use four different heuristic algorithms that are SA,430

GA, ACO, and PSO to search for the “best solution” of the431

scheduling problems proposed in this paper. All of the algo-432

rithms adopted in this paper are also based on the concept433

of random keys proposed by Bean (1994) to generate the434

individuals.435

Simulated annealing436

The idea of SA algorithm arises from the physical anneal-437

ing of solids, and it has been successfully applied to com-438

binatorial problems by Kirkpatrick et al. (1983). SA has the439

advantage that it can avoid be trapped in a local optimum440

by occasionally allowing “hill-climbing moves”. This algo-441

rithm, although it was invented long time ago, still works442

very well and very efficiently in many problems up to now.443

In literature, it is often used to compare with other more444

fashioned heuristic algorithms. In this paper, we adopt the445

standard type of SA algorithm. The reader can refer to Kirk-446

patrick et al. (1983) for the main steps of this algorithm.447

Nearchou (2004) and Mirsanei et al. (2011) used SA to solve448

some other scheduling problems.449

Genetic algorithms450

GA has a lot of formulation in literature. The main steps451

adopted in this paper are the elitism, uniform crossover, and452

immigration. We shall randomly generate N chromosomes453

in the initial population, and use the concept of random 454

keys proposed by Bean (1994) to generate the chromosomes. 455

Suppose that we consider the five-job problem. Then the 456

length of chromosome will be five. Therefore, we gener- 457

ate five random numbers in (0, 1) for each chromosome. 458

The mapping to the job sequence is accomplished by sorting 459

the random numbers and sequencing the jobs in ascending 460

order. For example, if we have obtained the random num- 461

bers (0.46, 0.91, 0.33, 0.75, 0.51), i.e., 1 ← 0.46, 2 → 462

0.91, 3 ← 0.33, 4 ← 0.75 and 5 → 0.51, then it would 463

represent the chromosome (job sequence) (3,1,5,4,2), since 464

0.33 < 0.46 < 0.51 < 0.75 < 0.91. 465

For the crossover, we are going to invoke the parame- 466

terized uniform crossover proposed by Speras and DeJong 467

(1991). Suppose that two chromosomes (0.46, 0.91, 0.33, 468

0.75, 0.51) and (0.84, 0.32, 0.64, 0.04, 0.48) are chosen ran- 469

domly from the old population. At each gene, we toss a faired 470

coin to select which parent will contribute the allele. We can 471

also consider the biased coin to perform this crossover. For 472

example, the probability of tossing a head may take as 0.7. 473

In this paper, we take the probability of tossing a head as 0.5. 474

Now we assume that a coin toss of head selects the allele 475

from the first parent, and a tail chooses the allele from the 476

second parent, which forms the first offspring. The second 477

offspring is obtained in the reverse way as obtaining the first 478

offspring. We provide a simple example given below: 479

Coin toss T H T H T

Parent 1 0.46 0.91 0.33 0.75 0.51

Paremt 2 0.84 0.32 0.64 0.04 0.48

Offspring 1 0.84 0.91 0.64 0.75 0.48

Offspring 2 0.46 0.32 0.33 0.04 0.51

480

Then the two offsprings can be obtained by sorting the ran- 481

dom numbers and sequencing the jobs in ascending order. 482

Instead of performing mutation, we employ the concept 483

of immigration in this paper. In other words, at each gener- 484

ation, more new members of the population are randomly 485

generated from the same distribution. In this paper, we 486

take the uniform (0,1) random variate. The stopping crite- 487

rion will be determined by specifying the maximal genera- 488

tion. 489

Finally, the reproduction is accomplished by using the 490

elitist strategy. We choose the best chromosomes (e.g., 10 % 491

of the population size) from one generation to the next. The 492

elitist strategy is frequently adopted by different variants of 493

GAs. 494

Now we briefly describe the entire evolution procedure. 495

Let Pt be the family of chromosomes in the t th genera- 496

tion, and |Pt | denote the population size of Pt . The next 497

generation is made of a% best chromosomes from Pt , b% 498

chromosomes for taking crossovers, and c% chromosomes 499

generated randomly (i.e., performing immigration), where 500

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

a + b + c = 100. The computational procedure is described501

as below:502

• Step 1. Initialize the population by generating the random503

numbers.504

• Step 2. Calculate the completion time of every job in505

each schedule selected from the population.506

• Step 3. Calculate the fitness function f (π) for each507

schedule π .508

• Step 4. Choose a · 0.01 · |Pt | best chromosomes as the509

members in the next generation.510

• Step 5. Choose b · 0.01 · |Pt | chromosomes to perform511

crossover and produce the members in the next genera-512

tion.513

• Step 6. Randomly generate c · 0.01 · |Pt | chromosomes514

as the members in the next generation like performing515

immigration.516

• Step 7. Save the best schedule and fitness value obtained517

so far.518

• Step 8. If the maximal generation is reached, then STOP,519

otherwise go to Step 2. to perform another iteration.520

Ant colony optimization521

The ACO proposed by Dorigo and Stützle (2004) has also522

been recognized as an efficient algorithm to solve the com-523

binatorial optimization problem. Therefore, a lot of different524

variants of ACO have been proposed based on the differ-525

ent purposes of combinatorial optimization problems. For526

example, Lai and Wu (2009) used one of the variants to527

solve the scheduling problems with fuzzy-valued process-528

ing times. Also, Arnaout et al. (2010) and Solano-Charris529

et al. (2011) used the ACO to solve some other scheduling530

problems.531

The main steps adopted in this paper will be described532

below. The probability, currently at node i , for choosing next533

node j is given by534

p
(k)
i j =

τi j
∑

l∈N
(k)
i

τil

if j ∈ N
(k)
i , (24)535

where N
(k)
i is the neighborhood of node i except for the536

predecessor of node i when ant k is staying at node i , and τi j537

denotes the amount of pheromone currently deposited in the538

edge (i, j).539

Dorigo and Stützle (2004) modified the random propor-540

tional rule and proposed a so-called pseudo-random propor-541

tional rule that is given below: when an ant k is now located542

at city i , it moves to a city j according to the following543

rule544

j =

{

arg max
l∈N

(k)
i

τil ifq ≤ q0

J otherwise,
(25)545

where q is a random number, q0 ∈ [0, 1] is a parameter, and 546

J is a random variable selected according to the probability 547

distribution given by (24). 548

Only the best-so-far tour is allowed to deposit the 549

pheromone after each iteration. Therefore, the pheromone 550

update rule for the tour T (bs) is given by 551

τi j ← (1 − ρ) · τi j + ρ · �τ
(bs)
i j (26) 552

for the edge (i, j) in T (bs), where �τ
(bs)
i j is given by 553

�τ
(bs)
i j =

⎧

⎨

⎩

α

η(C̃
(bs)
max)

if edge (i, j) is in T (bs)

0 otherwise

(27) 554

for some constant α in R. 555

In addition to the global pheromone update rule in (26), 556

Dorigo and Stützle (2004) also suggested a local pheromone 557

update rule that will be applied after all K ants having finished 558

the tour construction. For edge (i, j) in some tour Tk that is 559

constructed by ant k, the update rule is given by 560

τi j ← (1 − ξ)τi j + ξ · τ0, (28) 561

where ξ ∈ (0, 1) and τ0 is set to be the initial pheromone. 562

Now, the computational procedure is summarized below. 563

• Step 1. Initialize K artificial ant tours by randomly gen- 564

erating the random numbers in {1, . . . , n}. 565

• Step 2. Initialize the pheromone trails by depositing a 566

constant value p on all edges. 567

• Step 3. Construct the artificial ant tours according to the 568

rule presented in (25). 569

• Step 4. Evaluate the objective function values of sched- 570

ules determined by the artificial ant tours. 571

• Step 5. Perform the local pheromone trails updating rule 572

according to (28). 573

• Step 6. Identify the best-so-far tour. 574

• Step 7. Perform the global pheromone trails updating rule 575

according to (26). 576

• Step 8. If the pre-determined maximal iteration is 577

reached, then STOP and return the “optimal schedule”; 578

otherwise we go to Step 4 to perform another iteration. 579

Particle swarm optimization 580

The PSO has also been used to solve the scheduling prob- 581

lems by referring to Tasgetiren et al. (2007) and the refer- 582

ences therein. The PSO is based on the social interaction 583

and communication such as bird flocking and fish school- 584

ing. The PSO is different from other evolutionary methods 585

in a way that it does not use the filtering operation, e.g., 586

crossover, mutation and so on. The members of the entire 587

population are maintained through the search procedure so 588

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

that the information can be socially shared among individ-589

uals to conduct the search direction towards the best posi-590

tion in the search space. The PSO was originally introduced591

by Eberhard and Kennedy (1995). Tasgetiren et al. (2007)592

introduced the smallest position value (SPV) rule borrowed593

from the random key representation in Bean (1994) to con-594

vert the continuous position value to a discrete job permuta-595

tion.596

The main steps adopted in this paper will be described597

below. In the initial population, every particle is a list of n598

random numbers between 0 and 1, where n is the job number.599

The SPV rule applies to each particle to find its corresponding600

permutation. The i th particle in the t th generation is denoted601

as602

X
(t)
i =

(

x
(t)
i1 , x

(t)
i2 , . . . , x

(t)
in

)

.603

The initial continuous position values of the particle is pro-604

duced randomly:605

x
(0)
i j = xmin + (xmax − xmin) · r1606

where xmin = 0, xmax = 4 and r1 is a uniform random607

number between 0 and 1. Initial velocities are established in608

a similar way:609

v
(0)
i j = vmin + (vmax − vmin) · r2610

where vmin = −4, vmax = 4 and r2 is a uniform random611

number between 0 and 1. We denote by612

P
(t)
i =

(

p
(t)
i1 , p

(t)
i2 , . . . , p

(t)
in

)

613

the personal best particle in the t th generation which is ini-614

tialized by p
(0)
i1 = x

(0)
i1 for 1 ≤ i ≤ n. We also denote by615

G(t) =
(

g
(t)
1 , g

(t)
2 , . . . , g(t)

n

)

616

the global best particle in the t th generation which is initial-617

ized as the best particle in the initial population.618

The inertia weight needs to be updated according to the619

following rule620

w(t) = w(t−1) · β,621

where β = 0.975 is the decrement factor and w(0) is set to be622

0.9 and never decreases below 0.4. The velocity is updated623

according to the following rule624

v
(t)
i j = w(t−1) · v

(t−1)
i j + c1 · r1 ·

(

p
(t−1)
i j − x

(t−1)
i j

)

625

+c2 · r2 ·
(

g
(t−1)
j − x

(t−1)
i j

)

626

where c1 and c2 are acceleration coefficients set to be 2, and627

r1 and r2 are uniform random numbers between 0 and 1.628

Finally, the position is updated according to the following 629

rule 630

x
(t)
i j = x

(t−1)
i j + v

(t)
i j . 631

Now, the computational procedure is summarized below. 632

• Step 1. Initialization and evaluation. 633

• Step 2. Update iteration counter. 634

• Step 3. Update inertia weight. 635

• Step 4. Update velocity 636

• Step 5. Update position 637

• Step 6. Evaluation 638

• Step 7. Update personal best 639

• Step 8. Update global best 640

• Step 9. If the stopping criterion is satisfied then stop. 641

Otherwise go to STEP 2. 642

Numerical examples 643

We consider n-job and m-machine flow shop scheduling 644

problem. Recall that CJi j is the completion time of job Ji 645

on machine j . We denote by CJi
the completion time of job 646

Ji , i.e., CJi
= CJi m , which means the completion time on the 647

last machine. We sometimes simply write Ci as the comple- 648

tion time of job i . Now the makespan Cmax is defined as the 649

last job to leave the system, i.e., Cmax = max {C1, . . . , Cn}. 650

In other words, we see that Cmax = CJnm . The purpose is 651

to minimize the makespan. Therefore, we want to solve the 652

following problem 653

min
π∈�

f (π) = Cmax. 654

Now, we are in a position to perform the computational 655

experiments. All of the algorithms are coded in the com- 656

mercial software MATLAB and are executed in a personal 657

computer with Intel(R)Core(TM)2 6300 1.86, 1.87 GHz and 658

1.99 GB RAM on Windows XP. We test the proposed algo- 659

rithms on flowshop scheduling problem with job-dependent 660

and machine-dependent learning effects. We consider three 661

machines and three different numbers of jobs n = 20, n = 662

50 and n = 100. 663

Choosing the values of parameters is time-consuming and 664

experience-depending. We first determine the range of pos- 665

sible values of each parameter based on the previous expe- 666

rience or well-known adoption in literature. For example, 667

the ranges of parameters of GA and ASO refer to Lai and 668

Wu (2008, 2009), and the ranges of parameters of PSO are 669

adapted from Tasgetiren et al. (2007). Also, we still have to 670

make preliminary trial among such ranges by testing different 671

values for every parameter in order to determine the best suit 672

among them. When the best fitness does not improve for 10 673

generations, the algorithm is stopped, which is the stopping 674

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

criterion adopted in this paper. Now, the values of parameters675

are shown below.676

(i) For the different job sizes, we take the same values of677

parameters of ACS, which are listed below: generation678

number is 300, population size is 200, ρ is 0.2, ξ is679

0.6, pseudo-random number is 0.8, α is 40, and initial680

pheromone is 0.005.681

(ii) For the different job sizes, we take the same values of682

parameters of GA, which are listed below: generation683

number is 2,000, population size is 500, crossover rate684

is 0.8, elitist rate is 0.1, and mutate rate is 0.1.685

(iii) The values of parameters of PSO are listed below.686

• job numbers n = 20: generation number is 1,000,687

population size is 500, the acceleration coefficient is688

2.5, initial inertial weight is 0.8, and the decrement689

factor is 0.975.690

• job numbers n = 50 and n = 100: generation num-691

ber is 2,000, population size is 500, the acceleration692

coefficient is 2.5, initial inertial weight is 0.8, and the693

decrement factor is 0.975.694

(iv) The values of parameters of SA are listed below.695

• job numbers n = 20: generation number is 10, 000,696

L = 0.1 and697

λ =
current iteration number

generation number
.698

• job numbers n = 50 and n = 100: generation number699

is 100,000, L = 0.1 and700

λ =
current iteration number

generation number
.701

For each case of different job size, a set of 20 instances of702

job processing times associated with the job-dependent and703

machine-dependent learning indices are randomly generated.704

• The job processing time on machines 1, 2 and 3 are gen-705

erated from the uniform distribution between the integers706

1 and 50.707

• The job-dependent and machine-dependent learning708

indices are generated from the uniform distributions709

between −0.2 and 0.710

Because the heuristic algorithms are kind of random search,711

each instance is run 5 times. We present the best one among712

5 times and the mean of them. For each heuristic algo-713

rithm, we execute 20 experiments. The average CPU time714

for 20 experiments is reported. Now, the experimental results715

are shown in the following tables, where the CPU time716

is reported in average with second as unit for all experi-717

ments.718

Job numbers 20

Experiments ACO GA PSO SA

Mean Min Mean Min Mean Min Mean Min

Exp.1 586 581 578 578 583 579 585 579

Exp.2 605 605 603 603 604 603 604 604

Exp.3 550 548 542 542 543 542 542 542

Exp.4 617 616 612 612 613 612 612 612

Exp.5 494 490 480 480 482 481 481 480

Exp.6 576 570 565 565 565 565 565 565

Exp.7 518 517 513 513 515 514 515 514

Exp.8 549 548 546 546 547 546 546 546

Exp.9 514 512 498 498 500 499 498 498

Exp.10 518 516 499 499 503 501 500 499

Exp.11 530 529 524 524 528 524 524 524

Exp.12 525 522 494 494 501 495 494 494

Exp.13 502 501 499 499 499 499 499 499

Exp.14 440 440 436 435 436 435 436 436

Exp.15 517 516 511 511 511 511 511 511

Exp.16 542 540 531 531 533 531 532 531

Exp.17 572 571 564 564 56 564 564 564

Exp.18 583 579 555 555 557 556 556 556

Exp.19 516 515 514 514 515 514 514 514

Exp.20 521 520 518 518 520 519 519 519

Average CPU

time (s)

44.4 38.3626 36.9812 0.6532

Job numbers 50

Experiments ACO GA PSO SA

Mean Min Mean Min Mean Min Mean Min

Exp.1 1,048 1,042 1,011 1,010 1,018 1,013 1,011 1,011

Exp.2 1,076 1,073 1,057 057 1,064 1,063 1,057 1,057

Exp.3 1,064 1,054 1,021 1,019 1,029 1,025 1,019 1,019

Exp.4 1,075 1,066 1,037 1,037 1,045 1,038 1,034 1,034

Exp.5 1,038 1,034 1,004 1,004 1,008 1,006 1,005 1,005

Exp.6 1,095 1,085 1,055 1,055 1,064 1,062 1,062 1,055

Exp.7 926 924 894 893 903 899 894 893

Exp.8 1,123 1,111 1,087 1,087 1,091 1,089 1,088 1,088

Exp.9 977 970 936 936 945 939 935 934

Exp.10 1,063 1,053 1,033 1,033 1,040 1,037 1,033 1,033

Exp.11 1,003 998 972 971 977 975 972 972

Exp.12 1,038 1,036 1,013 1,013 1,019 1,015 1,014 1,014

Exp.13 1,121 1,115 1,078 1,077 1,084 1,081 1,078 1,078

Exp.14 1,173 1,163 1,123 1,122 1,131 1,127 1,130 1,123

Exp.15 1,087 1,079 1,060 1,060 1,064 1,062 1,062 1,061

Exp.16 1,157 1,153 1,131 1,128 1,141 1,138 1,131 1,128

Exp.17 1,063 1,060 1,044 1,043 1,050 1,047 1,043 1,042

Exp.18 1,011 1,005 980 978 991 986 977 977

Exp.19 1,002 995 969 969 975 969 970 969

Exp.20 974 971 950 949 955 952 951 949

Average CPU

time (s)

152.2905 94.6624 94.772 10.25

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

Job numbers 100

Experiments ACO GA PSO SA

Mean Min Mean Min Mean Min Mean Min

Exp.1 2,019 2,010 1,961 1,960 1,982 1,968 1,961 1,961

Exp.2 1,843 1,838 1,782 1,785 1,803 1,795 1,785 1,785

Exp.3 1,896 1,889 1,844 1,843 1,865 1,860 1,847 1,841

Exp.4 1,992 1,988 1,921 1,921 1,945 1,941 1,920 1,920

Exp.5 1,751 1,744 1,685 1,683 1,708 1,701 1,689 1,681

Exp.6 1,944 1,936 1,864 1,863 1,883 1,878 1,864 1,862

Exp.7 1,817 1,809 1,747 1,745 1,766 1,756 1,741 1,738

Exp.8 2,080 2,073 2,028 2,027 2,053 2,042 2,034 2,028

Exp.9 1,995 1,992 1,915 1,913 1,939 1,928 1,915 1,914

Exp.10 1,776 1,771 1,722 1,721 1,742 1,735 1,720 1,718

Exp.11 1,820 1,812 1,753 1,751 1,775 1,768 1,751 1,750

Exp.12 1,745 1,735 1,673 1,671 1,697 1,691 1,670 1,670

Exp.13 1,872 1,857 1,815 1,814 1,832 1,827 1,814 1,814

Exp.14 1,807 1,794 1,748 1,748 1,769 1,756 1,748 1,745

Exp.15 1,751 1,742 1,688 1,685 1,710 1,699 1,684 1,684

Exp.16 1,965 1,961 1,902 1,901 1,918 1,906 1,902 19,02

Exp.17 1,947 1,943 1,900 1,899 1,917 1,909 1,908 1,900

Exp.18 1,876 1,871 1,812 1,811 1,829 1,822 1,812 1,811

Exp.19 1,832 1,829 1,781 1,778 1,794 1,791 1,780 1,779

Exp.20 1,779 1,764 1,718 1,716 1,736 1,727 1,718 1,715

Average CPU

time (s)

449.0344 1,90.6218 190.8124 16.8968

The experiments show that the GA outperforms the other719

heuristic algorithms for the job sizes of 20 and 50. How-720

ever, for the job size of 100, the SA shows the best results in721

the search domain. Because the searched results of heuris-722

tic algorithms depend heavily on the initial values of para-723

meters and the types of problems, the performance for the724

different heuristic algorithms presented in this paper cannot725

apply to the other combinatorial optimization problems. In726

other words, the efficiency of different heuristic algorithms727

is problem-dependent.728

Conclusion729

The main purpose of this paper is to propose a new model730

for the multi-machine scheduling problems by simultane-731

ously considering the job-dependent and machine-dependent732

learning factors. Since this general problem is really compli-733

cated, we solve it by using four popular heuristic algorithms734

in literature, which are SA, GA, ACO and PSO etc.735

The scheduling problems considered in this paper always736

assume that the resources are available and there is no737

deadlock issue. This may not be sensible in the reality.738

Owing to the competition for limited resources among sev-739

eral processes, the entire system might get stuck at deadlock.740

For this issue, we may refer to Hu and Li (2009a,b,c, 2010) 741

and Hu et al. (2011). Therefore, in the future research, we 742

can consider the scheduling problems with deadlock issue. 743

Lee (2004), Toksari and Güner (2010), Wang (2007), 744

Wang and Cheng (2007) and Wu et al. (2012) simultane- 745

ously considered the deteriorating jobs and learning effects 746

in scheduling problems. In the future research, we can also 747

study the multi-machine scheduling problems by simul- 748

taneously considering the deteriorating jobs and the job- 749

dependent and machine-dependent learning factors. We can 750

also impose the job-dependent and machine-dependent learn- 751

ing factors upon the different models reviewed in second sec- 752

tion in the future research. These considerations may be the 753

challenge topic. 754

On the other hand, in the future research, it is also pos- 755

sible to propose different variants of the prototype of the 756

multi-machine scheduling problems with job-dependent and 757

machine-dependent learning effects in third section. For 758

example, we may study the job-dependent and machine- 759

dependent learning factors upon the sum-of-processing-time 760

based problems. More precisely, we can extend (9) to the 761

following formula 762

pi j[r] = pi j ·

(

q(r) +

r−1
∑

k=1

p[k]

)ζi j

, 763

where ζi j is defined in (23). We can also extend (10) to the 764

following formula 765

pi j[r] = pi j · fi j

(

r−1
∑

k=1

p[k]

)

· gi j (r), (29) 766

where the functions fi j and gi j satisfy some suitable condi- 767

tions, and play the same roles as parameter ζi j . In general, 768

we can extend (11) to the following formula 769

pi j[r] = pi j · fi j

(

r−1
∑

k=1

βk · p[k], r

)

, 770

which also generalizes the setting in (29). 771

As we have mentioned before, the multi-machine schedul- 772

ing problems by simultaneously considering the job-depe- 773

ndent and machine-dependent learning factors proposed in 774

this paper is complicated. In the future research, we shall 775

also develop some other more efficient heuristic algorithms 776

to solve this complicated problem. 777

References 778

Arnaout, J.-P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony 779

optimization algorithm to minimize the makespan on unrelated paral- 780

lel machines with sequence-dependent setup times. Journal of Intel- 781

ligent Manufacturing, 21, 693–701. 782

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

u
n
co

rr
ec

te
d

p
ro

o
f

J Intell Manuf

Bachman, A., & Janiak, A. (2004). Scheduling jobs with position-783

dependent processing times. Journal of Operational Research Soci-784

ety, 55, 257–264.785

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing786

and optimization. ORSA Journal on Computing, 6, 154–160.787

Biskup, D. (1999). Single-machine scheduling with learning consider-788

ations. European Journal of Operational Research, 115, 173–178.789

Cheng, T. C. E., Wu, C. C., & Lee, W. C. (2008). Some schedul-790

ing problems with sum-of-processing-times-based and job-position-791

based learning effects. Information Sciences, 178, 2476–2487.792

Cheng, T. C. E., & Wang, G. (2000). Single machine scheduling with793

learning effect considerations. Annals of Operations Research, 98,794

273–290.795

Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge:796

MIT Press.797

Eberhard, R. C., & Kennedy, J. (1995). A new optimizer using particle798

swarm theory. In Proceedings of the sixth international symposium799

on micro machine and human science, Nagoya, Japan (pp. 39–43).800

Gonzalez, T., & Sahni, S. (1978). Flowshop and jobshop schedule: Com-801

plexity and approximation. Operations Research, 26, 36–52.802

Hu, H., & Li, Z. (2009a). Modeling and scheduling for manufacturing803

grid workflows using timed Petri nets. The International Journal of804

Advanced Manufacturing Technology, 42, 553–568.805

Hu, H., & Li, Z. (2009b). Liveness enforcing supervision in video806

streaming systems using siphons. Journal of Information Science807

and Engineering, 25, 1863–1884.808

Hu, H., & Li, Z. (2009c). Local and global deadlock prevention policies809

for resource allocation systems using partially generated reachability810

graphs. Computers and Industrial Engineering, 57, 1168–1181.811

Hu, H., & Li, Z. (2010). Synthesis of liveness enforcing supervisor for812

automated manufacturing systems. Journal of Intelligent Manufac-813

turing, 21, 555–567.814

Hu, H., Li, Z., & Al-Ahmari, A. (2011). Reversed fuzzy Petri nets815

and their application for fault diagnosis. Computers and Industrial816

Engineering, 60, 505–510.817

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by818

simulated annealing. Science, 220, 671–680.819

Koulamas, C., & Kyparisis, G. J. (2007). Single-machine and two-820

machine flowshop scheduling with general learning functions. Euro-821

pean Journal of Operational Research, 178, 402–407.822

Kuo, W.-H., & Yang, D.-L. (2006a). Single-machine group scheduling823

with a time-dependent learning effect. Computers and Operations824

Research, 33, 2099–2112.825

Kuo, W.-H., & Yang, D.-L. (2006b). Minimizing the total completion826

time in a single-machine scheduling problem with a time-dependent827

learning effect. European Journal of Operational Research, 174,828

1184–1190.829

Kuo, W.-H., & Yang, D.-L. (2006c). Minimizing the makespan in a sin-830

gle machine scheduling problem with a time-based learning effect.831

Information Processing Letter, 97, 64–67.832

Lai, P.-J., & Lee, W.-C. (2011). Single-machine scheduling with general833

sum-of-processing time-based and position-based learning effects.834

Omega, 39, 467–471.835

Lai, P.-J., & Wu, H.-C. (2008). Using genetic algorithms to solve836

fuzzy flow shop scheduling problems based on possibility and neces-837

sity measures. International Journal of Uncertainty, Fuzziness and838

Knowledge-Based Systems, 16, 409–433.839

Lai, P.-J., & Wu, H.-C. (2009). Using ant colony optimization to mini-840

mize the fuzzy makespan and total weighted fuzzy completion time in841

flow shop scheduling problems. The International Journal of Uncer-842

tainty, Fuzziness and Knowledge-Based Systems, 17, 559–584.843

Lee, W. C. (2004). A note on deteriorating jobs and learning in single-844

machine scheduling problems. International Journal of Business and845

Economics, 3, 83–89.846

Lee, W.-C., & Wu, C.-C. (2004). Minimizing total completion time in a 847

two-machine flowshop with a learning effect. International Journal 848

of Production Economics, 88, 85–93. 849

Lee, W.-C., Wu, C.-C., & Sung, H.-J. (2004). A bi-criterion single- 850

machine scheduling problem with learning considerations. Acta 851

Informatica, 40, 303–315. 852

Lee, W.-C., & Wu, C.-C. (2009). Some single-machine and m-machine 853

flowshop scheduling problems with learning considerations. Infor- 854

mation Sciences, 179, 3885–3892. 855

Mirsanei, H. S., Zandieh, M., Moayed, M. J., & Khabbazi, M. R. 856

(2011). A simulated annealing algorithm approach to hybrid flow 857

shop scheduling with sequence-dependent setup times. Journal of 858

Intelligent Manufacturing, 22, 965–978. 859

Moshieov, G. (2001). Scheduling problems with a learning effect. Euro- 860

pean Journal of Operational Research, 132, 687–693. 861

Moshieov, G. (2001). Parallel machine scheduling with a learning effect. 862

Journal of Operational Research Society, 52, 1165–1169. 863

Moshieov, G., & Sidney, J. B. (2003). Scheduling with general 864

job-dependent learning curves. European Journal of Operational 865

Research, 147, 665–670. 866

Moshieov, G., & Sidney, J. B. (2005). Note on scheduling with general 867

learning curves to minimize the number of tardy jobs. Journal of 868

Operational Research Society, 56, 110–112. 869

Nearchou, A. C. (2004). Flow-shop sequencing using hybrid simulated 870

annealing. Journal of Intelligent Manufacturing, 15, 317–328. 871

Solano-Charris, E. L., Montoya-Torres, J. R., & Paternina-Arboleda, 872

C. D. (2011). Ant colony optimization algorithm for a bi-criteria 873

2-stage hybrid flowshop scheduling problem. Journal of Intelligent 874

Manufacturing, 22, 815–822. 875

Speras, W. M. & DeJong, K. A. (1991). On the virtues of parameter- 876

ized uniform crossover. In: Proceedings of the fourth international 877

conference genetic algorithms (pp. 230–236). 878

Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2007). A 879

particle swarm optimization algorithm for makespan and total flow- 880

time minimization in the permutation flowshop sequencing problem. 881

European Journal of Operational Research, 177, 1930–1947. 882

Toksari, M. D., & Güner, E. (2010). Parallel machine scheduling prob- 883

lem to minimize the earliness/tardiness costs with learning effect and 884

deteriorating jobs. Journal of Intelligent Manufacturing, 21, 843851. 885

Wang, J.-B. (2007). Single-machine scheduling problems with the 886

effects of learning and deterioration. Omega, 35, 397–402. 887

Wang, J.-B., & Xia, Z.-Q. (2005). Flow shop scheduling with a learning 888

effect. Journal of Operational Research Society, 56, 1325–1330. 889

Wang, X., & Cheng, T. C. E. (2007). Single-machine scheduling with 890

deteriorating jobs and learning effects to minimize the makespan. 891

European Journal of Operational Research, 178, 57–70. 892

Wu, C.-C. (2006). The development of a solution to the single-machine 893

total weighted completion time problem with a learning effect. Inter- 894

national Journal of Management, 23, 113–116. 895

Wu, C.-C., Lee, W.-C., & Wang, W.-C. (2007). A two-machine flow- 896

shop maximum tardiness scheduling problem with a learning effect. 897

International Journal of Advanced Manufacturing Technology, 31, 898

743–750. 899

Wu, W.-H., Cheng, S.-R., Wu, C.-C., & Yin, Y. (2012). Ant colony 900

algorithms for a two-agent scheduling with sum-Of processing times- 901

based learning and deteriorating considerations. Journal of Intelli- 902

gent Manufacturing, 23, 1985–1993. 903

Yin, Y.-Q., Xu, D.-H., Sun, K.-B., & Li, H.-X. (2009). Some schedul- 904

ing problems with general position-dependent and time-dependent 905

learning effects. Information Sciences, 179, 2416–2425. 906

123

Journal: 10845-JIMS MS: 0827 TYPESET DISK LE CP Disp.:2013/8/17 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

