

Dear Author,

Here are the proofs of your article.

- You can submit your corrections **online**, via **e-mail** or by **fax**.
- For **online** submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and **email** the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the **journal title**, **article number**, and **your name** when sending your response via e-mail or fax.
- **Check** the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- **Check** the questions that may have arisen during copy editing and insert your answers/ corrections.
- **Check** that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the *Edited manuscript*.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please **do not** make changes that involve only matters of style. We have generally introduced forms that follow the journal's style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections **within 48 hours**, we will send you a reminder.
- Your article will be published **Online First** approximately one week after receipt of your corrected proofs. This is the **official first publication** citable with the DOI. **Further changes are, therefore, not possible.**
- The **printed version** will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: [http://dx.doi.org/\[DOI\]](http://dx.doi.org/[DOI]).

If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: <http://www.springerlink.com>.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.

Metadata of the article that will be visualized in OnlineFirst

Article Title	Using heuristic algorithms to solve the scheduling problems with job-dependent and machine-dependent learning effects	
Article Sub-Title		
Article CopyRight	Springer Science+Business Media New York (This will be the copyright line in the final PDF)	
Journal Name	Journal of Intelligent Manufacturing	
Corresponding Author	Family Name Particle Given Name Suffix Division Organization Address Email	Wu Hsien-Chung Department of Mathematics National Kaohsiung Normal University Kaohsiung , 802, Taiwan hcwu@nknucc.nknu.edu.tw
Author	Family Name Particle Given Name Suffix Division Organization Address Email	Lai Peng-Jen Department of Mathematics National Kaohsiung Normal University Kaohsiung , 802, Taiwan
Schedule	Received Revised Accepted	13 February 2013 8 August 2013
Abstract	The multi-machine scheduling problems with job-dependent and machine-dependent learning effects are proposed in this paper. Since it is almost impossible to obtain the analytic results for this complicated multi-machine scheduling problems with learning effects, four heuristic algorithms are used to solve this newly proposed model, where the variants of well-known genetic algorithm (GA), simulated annealing (SA), ant colony optimization (ACO) and particle swarm optimization (PSO) are coded in the commercial software MATLAB. The objective is to minimize the makespan of this new model. For this kind of scheduling problem, the numerical experiments show that the GA and SA outperform ACO and PSO.	
Keywords (separated by '-')	Scheduling problems - Genetic algorithm - Simulated annealing - Ant colony optimization - Particle swarm optimization - Learning effects	
Footnote Information		

**Please ensure you fill out your response to the queries raised below
and return this form along with your corrections**

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below

Query	Details required	Author's response
1.	Kindly check and confirm the edit in the paragraph 'This paper is organized as follows...' in page 2 of the manuscript.	
2.	Please provide a definition for the significance of bold in the inline tables.	
3.	References citation 'Lee et al., Kennedy and Eberhart, Spears and DeJong' have been changed to 'Lee and Wu, Eberhard and Kennedy, Speras and DeJong'. Please check and change accordingly.	

Using heuristic algorithms to solve the scheduling problems with job-dependent and machine-dependent learning effects

Peng-Jen Lai · Hsien-Chung Wu

Received: 13 February 2013 / Accepted: 8 August 2013
© Springer Science+Business Media New York 2013

1 Abstract The multi-machine scheduling problems with
2 job-dependent and machine-dependent learning effects are
3 proposed in this paper. Since it is almost impossible to
4 obtain the analytic results for this complicated multi-machine
5 scheduling problems with learning effects, four heuristic
6 algorithms are used to solve this newly proposed model,
7 where the variants of well-known genetic algorithm (GA),
8 simulated annealing (SA), ant colony optimization (ACO)
9 and particle swarm optimization (PSO) are coded in the com-
10 mercial software MATLAB. The objective is to minimize
11 the makespan of this new model. For this kind of scheduling
12 problem, the numerical experiments show that the GA and
13 SA outperform ACO and PSO.

14 Keywords Scheduling problems · Genetic algorithm ·
15 Simulated annealing · Ant colony optimization · Particle
16 swarm optimization · Learning effects

17 Introduction

18 The learning effects in scheduling problems have been widely
19 studied recently. The main reasons come from the fact that
20 the same kind of jobs will be repeatedly processed and the
21 employees or workers can improve their skills after doing the
22 same task for a long time.

23 To the best of our knowledge, the scheduling problems
24 with learning effects coming from machines was seemingly
25 not proposed in the literature. In practical situation, the
26 different machines might own the different learning rates.
27 In this paper, we consider the n -job and m -machine flow

shop scheduling problems. The learning factors come from
28 jobs and machines will be included simultaneously in the
29 scheduling problem. Therefore, we can consider three kinds
30 of scheduling problems with learning effects. Firstly, we may
31 assume that only the job-dependent learning factor is taken
32 into account in this problem; that is, the learning factor comes
33 from machines will be ignored. This problem was considered
34 by [Moshieov and Sidney \(2003\)](#). Secondly, suppose that only
35 the machine-dependent learning factor is taken into account
36 in this problem; that is, the learning factor comes from jobs
37 will be ignored. Thirdly, in the general case, we shall con-
38 sider the job-dependent and machine-dependent learning fac-
39 tors simultaneously. This kind of problem is really compli-
40 cated such that it is almost impossible to obtain the analytic
41 results. In this paper, we apply four heuristic algorithms that
42 are genetic algorithm (GA), simulated annealing (SA), ant
43 colony optimization (ACO) and particle swarm optimization
44 (PSO) to minimize the makespan of this problem.

45 This paper is organized as follows. In second section,
46 we provide the brief review for the scheduling problems
47 with learning effects. In third section, we introduce the new
48 models that simultaneously consider the job-dependent and
49 machine-dependent learning effects. In fourth section, we
50 introduce four heuristic algorithms that will be used to solve
51 the scheduling problems with job-dependent and machine-
52 dependent learning effects. In fifth section, we provide the
53 numerical experiments in order to minimize the makespan of
54 this newly proposed model.

55 Review for scheduling problems with learning effects

56 We briefly review the frequently adopted scheduling prob-
57 lems with learning effects in the literature. Of course, the
58 analytic results can be obtained for the single-machine prob-
59

P.-J. Lai · H.-C. Wu (✉)
Department of Mathematics, National Kaohsiung Normal University,
Kaohsiung 802, Taiwan
e-mail: hcwu@nknuc.nknu.edu.tw

60 The multi-machine scheduling problems with learning
 61 effects were seldom studied in the literature due to its com-
 62 plication, where the machine-dependent learning effects was
 63 also not considered. In other words, considering the machine-
 64 dependent learning effects will increase the complication of
 65 this kind of problem. Therefore, we can use the heuristic
 66 algorithms to solve this kind of new problem.

67 Single-machine scheduling problems

68 Suppose that there are n jobs available at time zero. We denote
 69 by p_i the normal processing time of job i . Because of the
 70 learning effects, the actual processing times of the later jobs
 71 in a schedule are smaller than their normal processing times.
 72 Therefore, Biskup (1999) proposed that the actual processing
 73 time of job i , when it is scheduled at the r th position in the
 74 schedule, can be given by

$$75 p_{ir} = p_i \cdot r^\alpha, \quad (1)$$

76 where $\alpha \leq 0$ is the learning index. This can also be inter-
 77 preted as the position-dependent learning effects.

78 Wang and Xia (2005) proposed that the actual processing
 79 time p_{ir} can be given by

$$80 p_{ir} = p_i \cdot (\beta - \alpha r), \quad (2)$$

81 where β and α denote a constant number and a learning ratio,
 82 respectively.

83 Koulamas and Kyparisis (2007) assumed that the actual
 84 processing time p_{ir} can be given by

$$85 p_{ir} = p_i \cdot \left(1 - \frac{\sum_{k=1}^{r-1} p_{[k]}}{\sum_{k=1}^n p_k}\right)^\alpha = p_i \cdot \left(\frac{\sum_{k=r}^n p_{[k]}}{\sum_{k=1}^n p_k}\right)^\alpha, \quad (3)$$

86 where $p_{[k]}$ denotes the normal processing time occupying the
 87 k th position in the schedule and $\alpha \geq 1$.

88 The volume-dependent processing time can also affect the
 89 learning effects. The learning effects on the processing time
 90 of a job were assumed to depend on the number of jobs that
 91 are processed before the current job. Cheng and Wang (2000)
 92 proposed that the actual processing time \hat{p}_i of job i can be
 93 modelled as follows:

$$94 \hat{p}_i = p_i - \alpha_i \cdot \min\{n_i, n_{0i}\} \quad (4)$$

95 for $i = 1, \dots, n$, where α_i is the learning coefficient, n_i is
 96 a nonnegative integer with $0 \leq n_i \leq n - 1$ indicating the
 97 number of jobs processed before job i in the schedule (i.e.,
 98 $n_i + 1$ is the position of job i), and n_{0i} is a nonnegative integer
 99 with $n_{0i} \leq n - 1$ indicating a threshold value.

100 Another volume-dependent learning effects based on the
 101 job processing times were also considered by Kuo and Yang
 102 (2006c,b). Since the employees or workers can learn more
 103 if they perform a job with a longer processing time; that is,
 104 the actual processing time of a job is affected by the total

105 processing time of the previous jobs, they proposed that the
 106 actual processing times can be given by

$$107 p_{ir} = \begin{cases} p_i & \text{if } r = 1 \\ (p_{[1]} + p_{[2]} + \dots + p_{[r]})^\alpha \cdot p_i & \text{if } r \geq 2, \end{cases} \quad (5)$$

108 or

$$109 p_{ir} = \begin{cases} p_i & \text{if } r = 1 \\ (1 + p_{[1]} + p_{[2]} + \dots + p_{[r]})^\alpha \cdot p_i & \text{if } r \geq 2, \end{cases} \quad (6)$$

110 where $\alpha \leq 0$ is a learning index, and $p_{[k]}$ denotes the normal
 111 processing time occupying the k th position in the schedule.

112 The learning effects presented in (1), (2) and (3) are
 113 job-independent. However, in the realistic situations, the
 114 improvement in the production process of some jobs may
 115 be faster than that of others, or the different jobs are affected
 116 depending on their positions in the schedule. Therefore, it
 117 is reasonable to study the scheduling problem with job-
 118 dependent learning effects. Moshieov and Sidney (2003) pro-
 119 posed that the actual processing time p_{ir} can be given by

$$120 p_{ir} = p_i \cdot r^{\alpha_i}, \quad (7)$$

121 where α_i is a job-dependent negative parameter. Bachman
 122 and Janiak (2004) also introduced the actual processing time
 123 p_{ir} that can be given by

$$124 p_{ir} = p_i - \alpha_i r, \quad (8)$$

125 where α_i denotes a learning ratio.

126 Cheng et al. (2008) took the product of the models
 127 proposed by Biskup (1999) and Koulamas and Kyparisis
 128 (2007), respectively, to introduce a model that considered the
 129 position-based and sum-of-processing-timed-based learning
 130 effects in which the actual processing time of a job is a func-
 131 tion of the total normal processing times of the jobs already
 132 processed and of the job's scheduled position with the form
 133 given by

$$134 p_{i[r]} = p_i \cdot \left(1 - \frac{\sum_{k=1}^{r-1} p_{[k]}}{\sum_{k=1}^n p_k}\right)^{a_1} \cdot r^{a_2}. \quad (9)$$

135 The model proposed by Lee and Wu (2009) generalized the
 136 model of Kuo and Yang (2006b), which is given by

$$137 p_{i[r]} = p_i \cdot \left(q(r) + \sum_{k=1}^{r-1} p_{[k]}\right)^a. \quad (9)$$

138 Yin et al. (2009) also generalized the model proposed by
 139 Cheng et al. (2008), which is given by

$$140 p_{i[r]} = p_i \cdot f\left(\sum_{k=1}^{r-1} p_{[k]}\right) \cdot g(r), \quad (10)$$

141 where the functions f and g satisfy some suitable conditions.
 142 Recently, based on the model of Yin et al. (2009) and Lai and

143 Lee (2011) proposed a more general model given by

144
$$p_{i[r]} = p_i \cdot f \left(\sum_{k=1}^{r-1} \beta_k \cdot p_{[k]}, r \right), \quad (11)$$

145 where the function f with two arguments satisfies some suitable conditions.

146 The goal of unrestricted common due date problem is to jointly minimize the weighted earliness, tardiness and completion time. Here the unrestricted common due date d is regarded as a decision variable whose value is going to be determined. Let $C_i, E_i = \max\{0, d - C_i\}$ and $T_i = \max\{0, C_i - d\}$ be the completion time, earliness and tardiness of job i , respectively. We also denote by w_1, w_2 and w_3 the per time unit penalties for earliness, tardiness and the completion time, respectively. Then we shall find a schedule π that minimizes the following objective function:

157
$$f(\pi) = \sum_{i=1}^n (w_1 E_i + w_2 T_i + w_3 C_i). \quad (12)$$

158 By introducing the leaning effects in (1), Biskup (1999) showed that the unrestricted common due date problem can be solved as an assignment problem which takes $O(n^3)$ time. In other words, the unrestricted common due date problem with learning effects is polynomially solvable. Moshieov (2001) considered the following objective function

164
$$f(d, \pi) = \sum_{i=1}^n (w_1 d + w_2 E_i + w_3 T_i) \quad (13)$$

165 with learning effect given in (7) and the objective function in (13). Also, the corresponding assignment problem is solved to obtain the optimal schedule.

166 Using the standard pair-wise interchange arguments, the following results were obtained.

- 170 • Moshieov (2001) showed that the makespan minimization problem with learning effects given in (1) can be optimized by the SPT rule.
- 171 • Wang and Xia (2005) showed that the makespan minimization problem with learning effects given in (2) can be optimized by the SPT rule.
- 172 • Koulamas and Kyparasis (2007) showed that the makespan minimization problem with learning effects given in (3) can be optimized by the SPT rule.

179 On the other hand, Bachman and Janiak (2004) showed that the makespan minimization problem with learning effects given in (1) can be solved in $O(n^3)$ times by an assigning procedure, and the optimal schedule considering the learning effects given in (8) can be found in $O(n \log n)$ times by sequencing jobs in nondecreasing order of the learning ratio α_i . Moshieov and Sidney (2003) considered the

186 learning effects given in (7). Kuo and Yang (2006c) considered the learning effects presented in (5) and shows that the 187 optimal schedule that minimizes the makespan satisfies the 188 following condition: the sequence of all jobs except for the 189 first processed job is the smallest processing time first (SPT 190 rule). Bachman and Janiak (2004) showed that the problems 191 $1|\xi_i, p_{ir} = p_i - \alpha_i r|C_{\max}$ and $1|\xi_i, p_{ir} = p_i \cdot r^\alpha|C_{\max}$ are 192 strongly NP-hard.

193 One of the elementary results of single-machine scheduling 194 problem is that the sum of flowtimes of all jobs is minimized 195 by sequencing the jobs according to the SPT rule. Incorporating 196 the learning effects into this problem, the following 197 results were obtained.

- 199 • Biskup (1999) showed that the total completion time 200 minimization problem with learning effects given in (1) is 201 optimized by the SPT order.
- 202 • Wang and Xia (2005) showed that the total completion 203 time minimization problem with learning effects given in 204 (2) is optimized by the SPT rule.
- 205 • Koulamas and Kyparasis (2007) showed that the total 206 completion time minimization problem with learning 207 effects given in (3) is optimized by the SPT rule.
- 208 • Kuo and Yang (2006b) showed that the total completion 209 time minimization problem with learning effects given in 210 (5) is optimized by the SPT rule.

211 Using the job interchanging technique, Bachman and Janiak 212 (2004) also proved many interesting results.

213 Moshieov and Sidney (2003) considered the learning 214 effects given in (7). On the other hand, Wu (2006) used the 215 branch-and-bound method to minimize the total weighted 216 completion time under the learning effects given in (1). The 217 objective is to find an optimal schedule π^* such that

$$\sum_{i=1}^n w_i C_i(\pi^*) \leq \sum_{i=1}^n w_i C_i(\pi)$$

218 for any schedule π , where w_i are positive real numbers for 219 $i = 1, \dots, n$.

220 Let d_i be the due date of job i . The lateness is defined 221 by $L_i = C_i - d_i$. The maximum lateness is defined as 222 $L_{\max} = \max\{L_1, \dots, L_n\}$. The objective is to minimize the 223 maximum lateness L_{\max} . It is well-known that the conventional 224 maximum lateness minimization problem is solvable 225 by the earliest due date rule (EDD rule). However, Cheng 226 and Wang (2000) showed that, under the consideration of 227 learning effects given in (4), this problem becomes NP-hard 228 in strong sense. Cheng and Wang (2000) also showed that, 229 although the general problem is NP-hard in the strong sense, 230 there are two special cases that can be solved in polynomial 231 time. Let d denote the common due date and U_i be a 0–1 232 variable, where $U_i = 1$ if job i is late, i.e., $C_i > d$, and 233

234 $U_i = 0$ otherwise, i.e., $C_i \leq d$. Moshieov and Sidney (2005)
 235 also considered the single-machine scheduling problem to
 236 minimize the number of tardy jobs.

237 We denote by $TC = \sum_{i=1}^n C_i$ the total completion time
 238 and by $TADC = \sum_{i=1}^n \sum_{j=1}^n |C_i - C_j|$ the total absolute
 239 differences in completion times. Let $\delta \in [0, 1]$. The objective
 240 is to find a schedule that minimizes the following measure

$$241 f(\pi) = \delta \cdot TC + (1 - \delta) \cdot TADC.$$

242 Moshieov (2001) considered the learning effects specified
 243 in (1) and obtain the optimal schedule by solving its cor-
 244 responding assignment problem. Under the learning effects
 245 given in (1), Lee et al. (2004) used the branch-and-bound
 246 algorithm to find a schedule that minimizes the sum of total
 247 completion time and the maximum tardiness, i.e., to find a
 248 schedule that minimizes the following objective function

$$249 \min \lambda \cdot TC(\pi) + (1 - \lambda) \cdot T_{\max}(\pi),$$

250 where $0 < \lambda < 1$, $TC(\pi) = \sum_{i=1}^n C_i(\pi)$ is the total com-
 251 pletion time and $T_{\max}(\pi)$ is the maximum tardiness of a
 252 schedule π .

253 Suppose that there are n jobs to be classified into m groups
 254 and to be processed on a single machine. All jobs are available
 255 at time zero. It is assumed that there is no setup time between
 256 any two consecutive jobs in the same group. However, the
 257 group setup times are required. The group setup times are
 258 assumed to be sequence-independent. Moreover, the normal
 259 processing time of a job is incurred if the job is scheduled
 260 first in a sequence of a certain group. Let J_{ij} denote the j th
 261 job in group G_i and p_{ijr} be the actual processing time of J_{ij}
 262 that is scheduled in the r th position in a sequence in group
 263 G_i . Kuo and Yang (2006a) considered the time-dependent
 264 learning effects defined by

$$265 p_{ijr} = (1 + p_{i[1]} + \dots + p_{i[r-1]})^{\alpha_i} p_{ij}, \quad (14)$$

266 where α_i is a constant learning index in a certain group
 267 G_i , p_{ij} is the normal processing time of J_{ij} in the origi-
 268 nal sequence and $p_{i[k]}$ is the normal processing time of $J_{i[k]}$
 269 that is scheduled in the k th position in a sequence in group
 270 G_i .

271 For the scheduling problems with deteriorating jobs, the
 272 actual processing time of a job in a schedule is modeled as an
 273 increasing function of its starting time due to deterioration
 274 effects. This model reflects a variety of real-life situations
 275 such as steel production, resource allocation, fire fighting,
 276 maintenance or cleaning, in which any delay in processing a
 277 job may result in an increasing effort to accomplish the job.
 278 In order to obtain the analytic results, most researchers model
 279 the actual processing time of a job as a linear or piecewise
 280 linear increasing function of its starting time. For example,
 281 the actual processing time can be assumed as $p_i + \beta_i t$, where
 282 p_i is the normal processing time, β_i is the growth rate of the
 283 processing time, and t is the starting time, of job i . Wang and

284 Cheng (2007) incorporated the learning effects into this kind
 285 of problem. If job i is scheduled in position r in a sequence,
 286 then its actual processing time is given by

$$287 p_{ir}(t) = (p_0 + \beta_i t) \cdot r^\alpha, \quad (15)$$

288 where p_0 is a common normal processing time which is
 289 incurred if job i is scheduled first in a sequence, t is the start-
 290 ing time of job i to be processed, β_i is the growth rate of the
 291 processing time of job i , which is the amount of increase in
 292 the processing time of job i per unit delay in its starting time
 293 due to the deterioration effects, and α is the learning index.
 294 On the other hand, Lee (2004) and Wang (2007) also incor-
 295 porated the learning effects into the scheduling problems with
 296 deteriorating jobs. If job i is started at time t and scheduled
 297 in position r in a sequence, then the actual processing time
 298 is given by

$$299 p_{ir}(t) = p_i \cdot (\zeta(t) + \beta \cdot r^\alpha),$$

300 where $\zeta(t)$ is an increasing function.

Multi-machine scheduling problems

301 Suppose that there are n jobs to be processed on two
 302 machines, where each job requires to be processed on
 303 machine 1 first and then on machine 2. We denote by a_i and
 304 b_i the normal processing times of job i on machine 1 and 2,
 305 respectively. For the job-position-based learning effects, Lee
 306 and Wu (2004) and Wu et al. (2007) proposed that the actual
 307 processing times can be given by

$$308 a_{ir} = a_i \cdot r^\alpha \text{ and } b_{ir} = b_i \cdot r^\alpha \quad (16)$$

309 with $\alpha < 0$. Thus the completion time of job scheduled in
 310 the r th position is given by

$$311 C_{[r]} = \max \left\{ \sum_{j=1}^r a_{[j]} \cdot j^\alpha, C_{[r-1]} \right\} + b_{[r]} \cdot r^\alpha. \quad (17)$$

312 Under the learning effects given in (16), Wu et al. (2007)
 313 provided a heuristic algorithm using the SA approach to min-
 314 imize the maximum tardiness, and Lee and Wu (2004) used
 315 the branch-and-bound algorithm to minimize the total com-
 316 pletion time.

317 On the other hand, Koulamas and Kyparisis (2007) pro-
 318 posed that the actual processing times can be given by

$$319 a_{ir} = a_i \cdot \left(1 - \frac{\sum_{k=1}^{r-1} a_{[k]}}{\sum_{k=1}^r a_k} \right)^\alpha \text{ and } b_{ir} = b_i \cdot \left(1 - \frac{\sum_{k=1}^{r-1} b_{[k]}}{\sum_{k=1}^r b_k} \right)^\alpha \quad (17)$$

320 which $\alpha \geq 1$. Two special cases that are called ordered job
 321 processing times and proportional job processing times are
 322 also investigated.

325 For the problem of ordered job processing times, we
 326 assume $a_i \leq b_i$ for all jobs $i = 1, \dots, n$ and $b_j \leq b_k$
 327 whenever $a_j \leq a_k$ for any two jobs j and k . In this case,
 328 the problem is denoted by $F2|LE, ord|\gamma(\pi)$, where γ is
 329 an objective function. For the problem of proportional job
 330 processing times, we assume $b_i = ca_i$ for all jobs $i =$
 331 $1, \dots, n$, where $c \geq 1$ is a constant factor. In this case, the
 332 problem is denoted by $F2|LE, prp|\gamma(\pi)$. Under these set-
 333 tings, [Koulamas and Kyparisis \(2007\)](#) also obtained many
 334 interesting results.

335 For the n -job and m -machine scheduling problems with
 336 learning effects, we denote by p_{ij} the normal processing time
 337 of job i on machine j and p_{ijr} the actual processing time of
 338 job i on machine j that is scheduled in position r . [Wang and
 339 Xia \(2005\)](#) proposed two models that are given by

$$340 \quad p_{ijr} = p_{ij} \cdot (\beta - \alpha r) \text{ and } p_{ijr} = p_{ij} \cdot r^\alpha \quad (18)$$

341 for $i, r = 1, \dots, n$ and $j = 1, \dots, m$, where β is a constant
 342 number and α is a learning index. It is assumed that β is
 343 a positive integer. Since the processing time is positive, for
 344 model (18), it is also assumed that $\beta - (n+1) \cdot \alpha > 0$.

345 For the problem $Fm||\sum C_i$, [Gonzalez and Sahni \(1978\)](#)
 346 provided an approximation algorithm in order of increasing
 347 $L_i = \sum_{j=1}^m p_{ij}$ and show that it has worst-case per-
 348 formance ratio, i.e., this algorithm is guaranteed to pro-
 349 duce a schedule with cost no more than m times the cost
 350 of an optimal schedule. This heuristic algorithm will also
 351 be referred as SPT rule. Therefore, [Wang and Xia \(2005\)](#)
 352 used the SPT rule in order of L_i as an approximate algo-
 353 rithm for the problem $Fm|p_{ijr} = p_{ij} \cdot (\beta - \alpha r)|\sum C_i$, and
 354 obtained some interesting results. [Wang and Xia \(2005\)](#) also
 355 used the SPT rule as an approximate algorithm to problem
 356 $Fm|p_{ijr} = p_{ij} \cdot (\beta - \alpha r)|C_{\max}$, and obtained some other
 357 interesting results.

358 Parallel machine scheduling problems

359 The parallel machine scheduling with learning effect was
 360 studied by [Moshieov \(2001\)](#). We firstly consider n jobs to be
 361 processed on m parallel identical machines. We assume that
 362 $m < n$. Jobs are numbered such that $p_1 \leq p_2 \leq \dots \leq p_n$.
 363 With no learning effects, the problem $Pm||C_{\max}$ is known to
 364 be NP-hard even for two machines. Clearly, for the learning
 365 effects given in (1), the problem $Pm|p_{ir} = p_i \cdot r^\alpha|C_{\max}$
 366 is also NP-hard, since the special case $\alpha = 0$ is iden-
 367 tical with the conventional version. However, minimizing
 368 flow time on parallel identical machines, i.e., $Pm||\sum C_i$,
 369 is solved by the SPT rule. When learning effect in (1) is
 370 assumed, [Moshieov \(2001\)](#) showed that an optimal schedule
 371 for $Pm|p_{ir} = p_i \cdot r^\alpha|\sum C_i$ consists of SPT sequences on
 372 each machine. The problem that n jobs are to be processed on
 373 m unrelated parallel machines was also studied by [Moshieov](#)

374 and [Sidney \(2003\)](#) by formulating it as an assignment prob-
 375 lem.

376 Multi-machine scheduling problems with learning 377 effects

378 Now, we shall consider the n -job and m -machine flow shop
 379 scheduling problems with learning effects. Given n jobs and
 380 m machines, each job consists of m operations. The m th oper-
 381 ation of each job has to be processed on the m th machine.
 382 The $(m+1)$ th operation starts only if the m th operation has
 383 been completed. Each machine is assumed to process one
 384 operation at a time with no precedence constraints between
 385 jobs. Operations are non-preemptive and are available for
 386 processing at time 0 on machine 1. Let p_{ij} be the normal
 387 processing time for job i on machine j , $i = 1, \dots, n$ and
 388 $j = 1, \dots, m$. In this paper, the learning factors come from
 389 jobs and machines will be included in the scheduling prob-
 390 lem. Therefore, we can consider three kinds of scheduling
 391 problems with learning effects.

392 Job-dependent learning effects

393 Suppose that only the job-dependent learning factor is taken
 394 into account in this problem; that is, the learning factor comes
 395 from machines will be ignored. We denote by δ_i the job-
 396 dependent parameter for job $i = 1, \dots, n$, where δ_i are neg-
 397 ative real numbers. Then the actual processing time of job i
 398 on machine j scheduled in position r is given by

$$399 \quad p_{ijr} = p_{ij} \cdot r^{\delta_i}. \quad (19)$$

400 This problem was considered by [Moshieov and Sidney
 401 \(2003\)](#).

402 Machine-dependent learning effects

403 Suppose that only the machine-dependent learning factor is
 404 taken into account in this problem; that is, the learning fac-
 405 tor comes from jobs will be ignored. We denote by η_j the
 406 machine-dependent parameter for machine $j = 1, \dots, m$,
 407 where η_j are negative real numbers. Then the actual process-
 408 ing time of job i on machine j scheduled in position r is
 409 given by

$$410 \quad p_{ijr} = p_{ij} \cdot r^{\eta_j}. \quad (20)$$

411 To the best of our knowledge, this problem has not been
 412 investigated in scheduling problems with learning effects.

413 Job-dependent and machine-dependent learning effects

414 In the general case, we shall consider the job-dependent
 415 and machine-dependent learning factors simultaneously. We

416 denote by λ_{ij} the job-machine-dependent parameter for job
 417 i on machine j , where λ_{ij} are negative real numbers. Then
 418 the actual processing time of job i on machine j scheduled
 419 in position r is given by

420
$$p_{ijr} = p_{ij} \cdot r^{\lambda_{ij}}. \quad (21)$$

421 For example, we may take $\lambda_{ij} = \delta_i + \eta_j$. This problem has
 422 also not been investigated in this research field so far.

423 For convenient discussions, Eqs. (19), (20) and (21) are
 424 unified as the following formula

425
$$p_{ijr} = p_{ij} \cdot r^{\zeta_{ij}}, \quad (22)$$

426 where ζ_{ij} is a learning factor defined below:

427
$$\zeta_{ij} = \begin{cases} \delta_i & \text{if only the job-dependent learning effects} \\ & \text{are considered} \\ \eta_j & \text{if only the machine-dependent learning} \\ & \text{effects are considered} \\ \lambda_{ij} & \text{if the job-dependent and machine-dependent} \\ & \text{learning effects are considered.} \end{cases} \quad (23)$$

429 Design of heuristic algorithms

430 We shall use four different heuristic algorithms that are SA,
 431 GA, ACO, and PSO to search for the “best solution” of the
 432 scheduling problems proposed in this paper. All of the algo-
 433 rithms adopted in this paper are also based on the concept
 434 of random keys proposed by Bean (1994) to generate the
 435 individuals.

436 Simulated annealing

437 The idea of SA algorithm arises from the physical annealing
 438 of solids, and it has been successfully applied to com-
 439 binatorial problems by Kirkpatrick et al. (1983). SA has the
 440 advantage that it can avoid be trapped in a local optimum
 441 by occasionally allowing “hill-climbing moves”. This algo-
 442 rithm, although it was invented long time ago, still works
 443 very well and very efficiently in many problems up to now.
 444 In literature, it is often used to compare with other more
 445 fashioned heuristic algorithms. In this paper, we adopt the
 446 standard type of SA algorithm. The reader can refer to Kirk-
 447 patrick et al. (1983) for the main steps of this algorithm.
 448 Nearchou (2004) and Mirsanei et al. (2011) used SA to solve
 449 some other scheduling problems.

450 Genetic algorithms

451 GA has a lot of formulation in literature. The main steps
 452 adopted in this paper are the elitism, uniform crossover, and
 453 immigration. We shall randomly generate N chromosomes

454 in the initial population, and use the concept of random
 455 keys proposed by Bean (1994) to generate the chromosomes.
 456 Suppose that we consider the five-job problem. Then the
 457 length of chromosome will be five. Therefore, we gener-
 458 ate five random numbers in $(0, 1)$ for each chromosome.
 459 The mapping to the job sequence is accomplished by sorting
 460 the random numbers and sequencing the jobs in ascending
 461 order. For example, if we have obtained the random num-
 462 bers $(0.46, 0.91, 0.33, 0.75, 0.51)$, i.e., $1 \leftarrow 0.46, 2 \rightarrow$
 463 $0.91, 3 \leftarrow 0.33, 4 \leftarrow 0.75$ and $5 \rightarrow 0.51$, then it would
 464 represent the chromosome (job sequence) $(3,1,5,4,2)$, since
 465 $0.33 < 0.46 < 0.51 < 0.75 < 0.91$.

466 For the crossover, we are going to invoke the parame-
 467 terized uniform crossover proposed by Speras and DeJong
 468 (1991). Suppose that two chromosomes $(0.46, 0.91, 0.33,$
 469 $0.75, 0.51)$ and $(0.84, 0.32, 0.64, 0.04, 0.48)$ are chosen ran-
 470 domly from the old population. At each gene, we toss a faired
 471 coin to select which parent will contribute the allele. We can
 472 also consider the biased coin to perform this crossover. For
 473 example, the probability of tossing a head may take as 0.7.
 474 In this paper, we take the probability of tossing a head as 0.5.
 475 Now we assume that a coin toss of head selects the allele
 476 from the first parent, and a tail chooses the allele from the
 477 second parent, which forms the first offspring. The second
 478 offspring is obtained in the reverse way as obtaining the first
 479 offspring. We provide a simple example given below:

Coin toss	<i>T</i>	<i>H</i>	<i>T</i>	<i>H</i>	<i>T</i>
Parent 1	0.46	0.91	0.33	0.75	0.51
Paremt 2	0.84	0.32	0.64	0.04	0.48
Offspring 1	0.84	0.91	0.64	0.75	0.48
Offspring 2	0.46	0.32	0.33	0.04	0.51

480 Then the two offsprings can be obtained by sorting the ran-
 481 dom numbers and sequencing the jobs in ascending order.

482 Instead of performing mutation, we employ the concept
 483 of immigration in this paper. In other words, at each genera-
 484 tion, more new members of the population are randomly
 485 generated from the same distribution. In this paper, we
 486 take the uniform $(0,1)$ random variate. The stopping crite-
 487 rion will be determined by specifying the maximal genera-
 488 tion.

489 Finally, the reproduction is accomplished by using the
 490 elitist strategy. We choose the best chromosomes (e.g., 10 %
 491 of the population size) from one generation to the next. The
 492 elitist strategy is frequently adopted by different variants of
 493 GAs.

494 Now we briefly describe the entire evolution procedure.
 495 Let P_t be the family of chromosomes in the t th genera-
 496 tion, and $|P_t|$ denote the population size of P_t . The next
 497 generation is made of $a\%$ best chromosomes from P_t , $b\%$
 498 chromosomes for taking crossovers, and $c\%$ chromosomes
 499 generated randomly (i.e., performing immigration), where

501 $a + b + c = 100$. The computational procedure is described
502 as below:

- 503 • **Step 1.** Initialize the population by generating the random
504 numbers.
- 505 • **Step 2.** Calculate the completion time of every job in
506 each schedule selected from the population.
- 507 • **Step 3.** Calculate the fitness function $f(\pi)$ for each
508 schedule π .
- 509 • **Step 4.** Choose $a \cdot 0.01 \cdot |P_t|$ best chromosomes as the
510 members in the next generation.
- 511 • **Step 5.** Choose $b \cdot 0.01 \cdot |P_t|$ chromosomes to perform
512 crossover and produce the members in the next genera-
513 tion.
- 514 • **Step 6.** Randomly generate $c \cdot 0.01 \cdot |P_t|$ chromosomes
515 as the members in the next generation like performing
516 immigration.
- 517 • **Step 7.** Save the best schedule and fitness value obtained
518 so far.
- 519 • **Step 8.** If the maximal generation is reached, then STOP,
520 otherwise go to Step 2. to perform another iteration.

521 Ant colony optimization

522 The ACO proposed by [Dorigo and Stützle \(2004\)](#) has also
523 been recognized as an efficient algorithm to solve the com-
524 binatorial optimization problem. Therefore, a lot of different
525 variants of ACO have been proposed based on the differ-
526 ent purposes of combinatorial optimization problems. For
527 example, [Lai and Wu \(2009\)](#) used one of the variants to
528 solve the scheduling problems with fuzzy-valued process-
529 ing times. Also, [Arnaout et al. \(2010\)](#) and [Solano-Charris
530 et al. \(2011\)](#) used the ACO to solve some other scheduling
531 problems.

532 The main steps adopted in this paper will be described
533 below. The probability, currently at node i , for choosing next
534 node j is given by

$$535 p_{ij}^{(k)} = \frac{\tau_{ij}}{\sum_{l \in N_i^{(k)}} \tau_{il}} \text{ if } j \in N_i^{(k)}, \quad (24)$$

536 where $N_i^{(k)}$ is the neighborhood of node i except for the
537 predecessor of node i when ant k is staying at node i , and τ_{ij}
538 denotes the amount of pheromone currently deposited in the
539 edge (i, j) .

540 [Dorigo and Stützle \(2004\)](#) modified the random propor-
541 tional rule and proposed a so-called pseudo-random propor-
542 tional rule that is given below: when an ant k is now located
543 at city i , it moves to a city j according to the following
544 rule

$$545 j = \begin{cases} \arg \max_{l \in N_i^{(k)}} \tau_{il} & \text{if } q \leq q_0 \\ J & \text{otherwise,} \end{cases} \quad (25)$$

546 where q is a random number, $q_0 \in [0, 1]$ is a parameter, and
547 J is a random variable selected according to the probability
548 distribution given by (24).

549 Only the best-so-far tour is allowed to deposit the
550 pheromone after each iteration. Therefore, the pheromone
551 update rule for the tour $T^{(bs)}$ is given by

$$552 \tau_{ij} \leftarrow (1 - \rho) \cdot \tau_{ij} + \rho \cdot \Delta \tau_{ij}^{(bs)} \quad (26)$$

553 for the edge (i, j) in $T^{(bs)}$, where $\Delta \tau_{ij}^{(bs)}$ is given by

$$554 \Delta \tau_{ij}^{(bs)} = \begin{cases} \frac{\alpha}{\eta(\tilde{C}_{\max}^{(bs)})} & \text{if edge } (i, j) \text{ is in } T^{(bs)} \\ 0 & \text{otherwise} \end{cases} \quad (27)$$

555 for some constant α in \mathbb{R} .

556 In addition to the global pheromone update rule in (26),
557 [Dorigo and Stützle \(2004\)](#) also suggested a local pheromone
558 update rule that will be applied after all K ants having finished
559 the tour construction. For edge (i, j) in some tour T_k that is
560 constructed by ant k , the update rule is given by

$$561 \tau_{ij} \leftarrow (1 - \xi) \tau_{ij} + \xi \cdot \tau_0, \quad (28)$$

562 where $\xi \in (0, 1)$ and τ_0 is set to be the initial pheromone.

563 Now, the computational procedure is summarized below.

- 564 • **Step 1.** Initialize K artificial ant tours by randomly gen-
565 erating the random numbers in $\{1, \dots, n\}$.
- 566 • **Step 2.** Initialize the pheromone trails by depositing a
567 constant value p on all edges.
- 568 • **Step 3.** Construct the artificial ant tours according to the
569 rule presented in (25).
- 570 • **Step 4.** Evaluate the objective function values of sched-
571 ules determined by the artificial ant tours.
- 572 • **Step 5.** Perform the local pheromone trails updating rule
573 according to (28).
- 574 • **Step 6.** Identify the best-so-far tour.
- 575 • **Step 7.** Perform the global pheromone trails updating rule
576 according to (26).
- 577 • **Step 8.** If the pre-determined maximal iteration is
578 reached, then STOP and return the “optimal schedule”;
579 otherwise we go to Step 4 to perform another iteration.

580 Particle swarm optimization

581 The PSO has also been used to solve the scheduling prob-
582 lems by referring to [Tasgetiren et al. \(2007\)](#) and the refer-
583 ences therein. The PSO is based on the social interaction
584 and communication such as bird flocking and fish school-
585 ing. The PSO is different from other evolutionary methods
586 in a way that it does not use the filtering operation, e.g.,
587 crossover, mutation and so on. The members of the entire
588 population are maintained through the search procedure so

589 that the information can be socially shared among individuals to conduct the search direction towards the best position in the search space. The PSO was originally introduced
 590 by Eberhard and Kennedy (1995). Tasgetiren et al. (2007)
 591 introduced the smallest position value (SPV) rule borrowed
 592 from the random key representation in Bean (1994) to convert
 593 the continuous position value to a discrete job permutation.
 594

595 The main steps adopted in this paper will be described
 596 below. In the initial population, every particle is a list of n
 597 random numbers between 0 and 1, where n is the job number.
 598 The SPV rule applies to each particle to find its corresponding
 599 permutation. The i th particle in the t th generation is denoted
 600 as
 601

$$603 X_i^{(t)} = (x_{i1}^{(t)}, x_{i2}^{(t)}, \dots, x_{in}^{(t)}).$$

604 The initial continuous position values of the particle is pro-
 605 duced randomly:

$$606 x_{ij}^{(0)} = x_{\min} + (x_{\max} - x_{\min}) \cdot r_1$$

607 where $x_{\min} = 0$, $x_{\max} = 4$ and r_1 is a uniform random
 608 number between 0 and 1. Initial velocities are established in
 609 a similar way:

$$610 v_{ij}^{(0)} = v_{\min} + (v_{\max} - v_{\min}) \cdot r_2$$

611 where $v_{\min} = -4$, $v_{\max} = 4$ and r_2 is a uniform random
 612 number between 0 and 1. We denote by

$$613 P_i^{(t)} = (p_{i1}^{(t)}, p_{i2}^{(t)}, \dots, p_{in}^{(t)})$$

614 the personal best particle in the t th generation which is ini-
 615 tialized by $p_{i1}^{(0)} = x_{i1}^{(0)}$ for $1 \leq i \leq n$. We also denote by

$$616 G^{(t)} = (g_1^{(t)}, g_2^{(t)}, \dots, g_n^{(t)})$$

617 the global best particle in the t th generation which is initial-
 618 ized as the best particle in the initial population.

619 The inertia weight needs to be updated according to the
 620 following rule

$$621 w^{(t)} = w^{(t-1)} \cdot \beta,$$

622 where $\beta = 0.975$ is the decrement factor and $w^{(0)}$ is set to be
 623 0.9 and never decreases below 0.4. The velocity is updated
 624 according to the following rule

$$625 v_{ij}^{(t)} = w^{(t-1)} \cdot v_{ij}^{(t-1)} + c_1 \cdot r_1 \cdot (p_{ij}^{(t-1)} - x_{ij}^{(t-1)}) \\ + c_2 \cdot r_2 \cdot (g_j^{(t-1)} - x_{ij}^{(t-1)})$$

626 where c_1 and c_2 are acceleration coefficients set to be 2, and
 627 r_1 and r_2 are uniform random numbers between 0 and 1.

628 Finally, the position is updated according to the following
 629 rule

$$630 x_{ij}^{(t)} = x_{ij}^{(t-1)} + v_{ij}^{(t)}.$$

632 Now, the computational procedure is summarized below.

- 633 • **Step 1.** Initialization and evaluation.
- 634 • **Step 2.** Update iteration counter.
- 635 • **Step 3.** Update inertia weight.
- 636 • **Step 4.** Update velocity
- 637 • **Step 5.** Update position
- 638 • **Step 6.** Evaluation
- 639 • **Step 7.** Update personal best
- 640 • **Step 8.** Update global best
- 641 • **Step 9.** If the stopping criterion is satisfied then stop.
 642 Otherwise go to STEP 2.

Numerical examples

643 We consider n -job and m -machine flow shop scheduling
 644 problem. Recall that $C_{J_i j}$ is the completion time of job J_i
 645 on machine j . We denote by C_{J_i} the completion time of job
 646 J_i , i.e., $C_{J_i} = C_{J_i m}$, which means the completion time on the
 647 last machine. We sometimes simply write C_i as the comple-
 648 tion time of job i . Now the *makespan* C_{\max} is defined as the
 649 last job to leave the system, i.e., $C_{\max} = \max\{C_1, \dots, C_n\}$.
 650 In other words, we see that $C_{\max} = C_{J_{n,m}}$. The purpose is
 651 to minimize the makespan. Therefore, we want to solve the
 652 following problem

$$653 \min_{\pi \in \Pi} f(\pi) = C_{\max}.$$

654 Now, we are in a position to perform the computational
 655 experiments. All of the algorithms are coded in the com-
 656 mercial software MATLAB and are executed in a personal
 657 computer with Intel(R)Core(TM)2 6300 1.86, 1.87GHz and
 658 1.99GB RAM on Windows XP. We test the proposed algo-
 659 rithms on flowshop scheduling problem with job-dependent
 660 and machine-dependent learning effects. We consider three
 661 machines and three different numbers of jobs $n = 20$, $n =$
 662 50 and $n = 100$.

663 Choosing the values of parameters is time-consuming and
 664 experience-depending. We first determine the range of pos-
 665 sible values of each parameter based on the previous ex-
 666 perience or well-known adoption in literature. For example,
 667 the ranges of parameters of GA and ASO refer to Lai and
 668 Wu (2008, 2009), and the ranges of parameters of PSO are
 669 adapted from Tasgetiren et al. (2007). Also, we still have to
 670 make preliminary trial among such ranges by testing different
 671 values for every parameter in order to determine the best suit
 672 among them. When the best fitness does not improve for 10
 673 generations, the algorithm is stopped, which is the stopping

criterion adopted in this paper. Now, the values of parameters are shown below.

(i) For the different job sizes, we take the same values of parameters of ACS, which are listed below: generation number is 300, population size is 200, ρ is 0.2, ξ is 0.6, pseudo-random number is 0.8, α is 40, and initial pheromone is 0.005.

(ii) For the different job sizes, we take the same values of parameters of GA, which are listed below: generation number is 2,000, population size is 500, crossover rate is 0.8, elitist rate is 0.1, and mutate rate is 0.1.

(iii) The values of parameters of PSO are listed below.

- job numbers $n = 20$: generation number is 1,000, population size is 500, the acceleration coefficient is 2.5, initial inertial weight is 0.8, and the decrement factor is 0.975.
- job numbers $n = 50$ and $n = 100$: generation number is 2,000, population size is 500, the acceleration coefficient is 2.5, initial inertial weight is 0.8, and the decrement factor is 0.975.

(iv) The values of parameters of SA are listed below.

- job numbers $n = 20$: generation number is 10,000, $L = 0.1$ and

$$\lambda = \frac{\text{current iteration number}}{\text{generation number}}.$$

- job numbers $n = 50$ and $n = 100$: generation number is 100,000, $L = 0.1$ and

$$\lambda = \frac{\text{current iteration number}}{\text{generation number}}.$$

For each case of different job size, a set of 20 instances of job processing times associated with the job-dependent and machine-dependent learning indices are randomly generated.

- The job processing time on machines 1, 2 and 3 are generated from the uniform distribution between the integers 1 and 50.
- The job-dependent and machine-dependent learning indices are generated from the uniform distributions between -0.2 and 0.

Because the heuristic algorithms are kind of random search, each instance is run 5 times. We present the best one among 5 times and the mean of them. For each heuristic algorithm, we execute 20 experiments. The average CPU time for 20 experiments is reported. Now, the experimental results are shown in the following tables, where the CPU time is reported in average with second as unit for all experiments.

Experiments	Job numbers 20							
	ACO		GA		PSO		SA	
	Mean	Min	Mean	Min	Mean	Min	Mean	Min
Exp.1	586	581	578	578	583	579	585	579
Exp.2	605	605	603	603	604	603	604	604
Exp.3	550	548	542	542	543	542	542	542
Exp.4	617	616	612	612	613	612	612	612
Exp.5	494	490	480	480	482	481	481	480
Exp.6	576	570	565	565	565	565	565	565
Exp.7	518	517	513	513	515	514	515	514
Exp.8	549	548	546	546	547	546	546	546
Exp.9	514	512	498	498	500	499	498	498
Exp.10	518	516	499	499	503	501	500	499
Exp.11	530	529	524	524	528	524	524	524
Exp.12	525	522	494	494	501	495	494	494
Exp.13	502	501	499	499	499	499	499	499
Exp.14	440	440	436	435	436	435	436	436
Exp.15	517	516	511	511	511	511	511	511
Exp.16	542	540	531	531	533	531	532	531
Exp.17	572	571	564	564	56	564	564	564
Exp.18	583	579	555	555	557	556	556	556
Exp.19	516	515	514	514	515	514	514	514
Exp.20	521	520	518	518	520	519	519	519
Average CPU time (s)	44.4		38.3626		36.9812		0.6532	

Experiments	Job numbers 50							
	ACO		GA		PSO		SA	
	Mean	Min	Mean	Min	Mean	Min	Mean	Min
Exp.1	1,048	1,042	1,011	1,010	1,018	1,013	1,011	1,011
Exp.2	1,076	1,073	1,057	57	1,064	1,063	1,057	1,057
Exp.3	1,064	1,054	1,021	1,019	1,029	1,025	1,019	1,019
Exp.4	1,075	1,066	1,037	1,037	1,045	1,038	1,034	1,034
Exp.5	1,038	1,034	1,004	1,004	1,008	1,006	1,005	1,005
Exp.6	1,095	1,085	1,055	1,055	1,064	1,062	1,062	1,055
Exp.7	926	924	894	893	903	899	894	893
Exp.8	1,123	1,111	1,087	1,087	1,091	1,089	1,088	1,088
Exp.9	977	970	936	936	945	939	935	934
Exp.10	1,063	1,053	1,033	1,033	1,040	1,037	1,033	1,033
Exp.11	1,003	998	972	971	977	975	972	972
Exp.12	1,038	1,036	1,013	1,013	1,019	1,015	1,014	1,014
Exp.13	1,121	1,115	1,078	1,077	1,084	1,081	1,078	1,078
Exp.14	1,173	1,163	1,123	1,122	1,131	1,127	1,130	1,123
Exp.15	1,087	1,079	1,060	1,060	1,064	1,062	1,062	1,061
Exp.16	1,157	1,153	1,131	1,128	1,141	1,138	1,131	1,128
Exp.17	1,063	1,060	1,044	1,043	1,050	1,047	1,043	1,042
Exp.18	1,011	1,005	980	978	991	986	977	977
Exp.19	1,002	995	969	969	975	969	970	969
Exp.20	974	971	950	949	955	952	951	949
Average CPU time (s)	152.2905		94.6624		94.772		10.25	

Experiments	ACO		GA		PSO		SA	
	Mean	Min	Mean	Min	Mean	Min	Mean	Min
Exp.1	2,019	2,010	1,961	1,960	1,982	1,968	1,961	1,961
Exp.2	1,843	1,838	1,782	1,785	1,803	1,795	1,785	1,785
Exp.3	1,896	1,889	1,844	1,843	1,865	1,860	1,847	1,841
Exp.4	1,992	1,988	1,921	1,921	1,945	1,941	1,920	1,920
Exp.5	1,751	1,744	1,685	1,683	1,708	1,701	1,689	1,681
Exp.6	1,944	1,936	1,864	1,863	1,883	1,878	1,864	1,862
Exp.7	1,817	1,809	1,747	1,745	1,766	1,756	1,741	1,738
Exp.8	2,080	2,073	2,028	2,027	2,053	2,042	2,034	2,028
Exp.9	1,995	1,992	1,915	1,913	1,939	1,928	1,915	1,914
Exp.10	1,776	1,771	1,722	1,721	1,742	1,735	1,720	1,718
Exp.11	1,820	1,812	1,753	1,751	1,775	1,768	1,751	1,750
Exp.12	1,745	1,735	1,673	1,671	1,697	1,691	1,670	1,670
Exp.13	1,872	1,857	1,815	1,814	1,832	1,827	1,814	1,814
Exp.14	1,807	1,794	1,748	1,748	1,769	1,756	1,748	1,745
Exp.15	1,751	1,742	1,688	1,685	1,710	1,699	1,684	1,684
Exp.16	1,965	1,961	1,902	1,901	1,918	1,906	1,902	19,02
Exp.17	1,947	1,943	1,900	1,899	1,917	1,909	1,908	1,900
Exp.18	1,876	1,871	1,812	1,811	1,829	1,822	1,812	1,811
Exp.19	1,832	1,829	1,781	1,778	1,794	1,791	1,780	1,779
Exp.20	1,779	1,764	1,718	1,716	1,736	1,727	1,718	1,715
Average CPU time (s)	449.0344		1,90,6218		190.8124		16.8968	

719 The experiments show that the GA outperforms the other
720 heuristic algorithms for the job sizes of 20 and 50. How-
721 ever, for the job size of 100, the SA shows the best results in
722 the search domain. Because the searched results of heuris-
723 tic algorithms depend heavily on the initial values of para-
724 meters and the types of problems, the performance for the
725 different heuristic algorithms presented in this paper cannot
726 apply to the other combinatorial optimization problems. In
727 other words, the efficiency of different heuristic algorithms
728 is problem-dependent.

729 Conclusion

730 The main purpose of this paper is to propose a new model
731 for the multi-machine scheduling problems by simultane-
732 ously considering the job-dependent and machine-dependent
733 learning factors. Since this general problem is really compli-
734 cated, we solve it by using four popular heuristic algorithms
735 in literature, which are SA, GA, ACO and PSO etc.

736 The scheduling problems considered in this paper always
737 assume that the resources are available and there is no
738 deadlock issue. This may not be sensible in the reality.
739 Owing to the competition for limited resources among sev-
740 eral processes, the entire system might get stuck at deadlock.

741 For this issue, we may refer to [Hu and Li \(2009a,b,c, 2010\)](#)
742 and [Hu et al. \(2011\)](#). Therefore, in the future research, we
743 can consider the scheduling problems with deadlock issue.

744 [Lee \(2004\)](#), [Toksoz and Güner \(2010\)](#), [Wang \(2007\)](#),
745 [Wang and Cheng \(2007\)](#) and [Wu et al. \(2012\)](#) simultane-
746 ously considered the deteriorating jobs and learning effects
747 in scheduling problems. In the future research, we can also
748 study the multi-machine scheduling problems by simultane-
749 ously considering the deteriorating jobs and the job-
750 dependent and machine-dependent learning factors. We can
751 also impose the job-dependent and machine-dependent learn-
752 ing factors upon the different models reviewed in second sec-
753 tion in the future research. These considerations may be the
754 challenge topic.

755 On the other hand, in the future research, it is also pos-
756 sible to propose different variants of the prototype of the
757 multi-machine scheduling problems with job-dependent and
758 machine-dependent learning effects in third section. For
759 example, we may study the job-dependent and machine-
760 dependent learning factors upon the sum-of-processing-time
761 based problems. More precisely, we can extend (9) to the
762 following formula

$$763 p_{ij[r]} = p_{ij} \cdot \left(q(r) + \sum_{k=1}^{r-1} p[k] \right)^{\zeta_{ij}},$$

764 where ζ_{ij} is defined in (23). We can also extend (10) to the
765 following formula

$$766 p_{ij[r]} = p_{ij} \cdot f_{ij} \left(\sum_{k=1}^{r-1} p[k] \right) \cdot g_{ij}(r), \quad (29)$$

767 where the functions f_{ij} and g_{ij} satisfy some suitable condi-
768 tions, and play the same roles as parameter ζ_{ij} . In general,
769 we can extend (11) to the following formula

$$770 p_{ij[r]} = p_{ij} \cdot f_{ij} \left(\sum_{k=1}^{r-1} \beta_k \cdot p[k], r \right),$$

771 which also generalizes the setting in (29).

772 As we have mentioned before, the multi-machine schedul-
773 ing problems by simultaneously considering the job-de-
774 pendent and machine-dependent learning factors proposed in
775 this paper is complicated. In the future research, we shall
776 also develop some other more efficient heuristic algorithms
777 to solve this complicated problem.

778 References

- 779 Arnaout, J.-P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony
780 optimization algorithm to minimize the makespan on unrelated parallel
781 machines with sequence-dependent setup times. *Journal of Intelligent
782 Manufacturing*, 21, 693–701.

- 783 Bachman, A., & Janiak, A. (2004). Scheduling jobs with position-
 784 dependent processing times. *Journal of Operational Research Society*, 55, 257–264.
 785
- 786 Bean, J. C. (1994). Genetic algorithms and random keys for sequencing
 787 and optimization. *ORSA Journal on Computing*, 6, 154–160.
 788
- 789 Biskup, D. (1999). Single-machine scheduling with learning consider-
 790 ations. *European Journal of Operational Research*, 115, 173–178.
 791
- 792 Cheng, T. C. E., Wu, C. C., & Lee, W. C. (2008). Some scheduling
 793 problems with sum-of-processing-times-based and job-position-
 794 based learning effects. *Information Sciences*, 178, 2476–2487.
 795
- 796 Cheng, T. C. E., & Wang, G. (2000). Single machine scheduling with
 797 learning effect considerations. *Annals of Operations Research*, 98,
 798 273–290.
 799
- 800 Dorigo, M., & Stützle, T. (2004). *Ant colony optimization*. Cambridge:
 801 MIT Press.
 802
- 803 Eberhard, R. C., & Kennedy, J. (1995). A new optimizer using particle
 804 swarm theory. In *Proceedings of the sixth international symposium*
 805 *on micro machine and human science, Nagoya, Japan* (pp. 39–43).
 806
- 807 Gonzalez, T., & Sahni, S. (1978). Flowshop and jobshop schedule: Com-
 808 plexity and approximation. *Operations Research*, 26, 36–52.
 809
- 810 Hu, H., & Li, Z. (2009a). Modeling and scheduling for manufacturing
 811 grid workflows using timed Petri nets. *The International Journal of*
 812 *Advanced Manufacturing Technology*, 42, 553–568.
 813
- 814 Hu, H., & Li, Z. (2009b). Liveness enforcing supervision in video
 815 streaming systems using siphons. *Journal of Information Science*
 816 *and Engineering*, 25, 1863–1884.
 817
- 818 Hu, H., & Li, Z. (2009c). Local and global deadlock prevention policies
 819 for resource allocation systems using partially generated reachability
 820 graphs. *Computers and Industrial Engineering*, 57, 1168–1181.
 821
- 822 Hu, H., & Li, Z. (2010). Synthesis of liveness enforcing supervisor for
 823 automated manufacturing systems. *Journal of Intelligent Manufac-
 824 turing*, 21, 555–567.
 825
- 826 Hu, H., Li, Z., & Al-Ahmari, A. (2011). Reversed fuzzy Petri nets
 827 and their application for fault diagnosis. *Computers and Industrial*
 828 *Engineering*, 60, 505–510.
 829
- 830 Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by
 831 simulated annealing. *Science*, 220, 671–680.
 832
- 833 Koulamas, C., & Kyprasis, G. J. (2007). Single-machine and two-
 834 machine flowshop scheduling with general learning functions. *Europ-
 835 ean Journal of Operational Research*, 178, 402–407.
 836
- 837 Kuo, W.-H., & Yang, D.-L. (2006a). Single-machine group scheduling
 838 with a time-dependent learning effect. *Computers and Operations*
 839 *Research*, 33, 2099–2112.
 840
- 841 Kuo, W.-H., & Yang, D.-L. (2006b). Minimizing the total completion
 842 time in a single-machine scheduling problem with a time-dependent
 843 learning effect. *European Journal of Operational Research*, 174,
 844 1184–1190.
 845
- 846 Kuo, W.-H., & Yang, D.-L. (2006c). Minimizing the makespan in a sin-
 847 gle machine scheduling problem with a time-based learning effect.
 848 *Information Processing Letter*, 97, 64–67.
 849
- 850 Lai, P.-J., & Lee, W.-C. (2011). Single-machine scheduling with general
 851 sum-of-processing time-based and position-based learning effects.
 852 *Omega*, 39, 467–471.
 853
- 854 Lai, P.-J., & Wu, H.-C. (2008). Using genetic algorithms to solve
 855 fuzzy flow shop scheduling problems based on possibility and neces-
 856 sity measures. *International Journal of Uncertainty, Fuzziness and*
 857 *Knowledge-Based Systems*, 16, 409–433.
 858
- 859 Lai, P.-J., & Wu, H.-C. (2009). Using ant colony optimization to mini-
 860 mize the fuzzy makespan and total weighted fuzzy completion time in
 861 flow shop scheduling problems. *The International Journal of Uncer-
 862 tainty, Fuzziness and Knowledge-Based Systems*, 17, 559–584.
 863
- 864 Lee, W. C. (2004). A note on deteriorating jobs and learning in single-
 865 machine scheduling problems. *International Journal of Business and*
 866 *Economics*, 3, 83–89.
 867
- 868 Lee, W.-C., & Wu, C.-C. (2004). Minimizing total completion time in a
 869 two-machine flowshop with a learning effect. *International Journal*
 870 *of Production Economics*, 88, 85–93.
 871
- 872 Lee, W.-C., Wu, C.-C., & Sung, H.-J. (2004). A bi-criterion single-
 873 machine scheduling problem with learning considerations. *Acta*
 874 *Informatica*, 40, 303–315.
 875
- 876 Lee, W.-C., & Wu, C.-C. (2009). Some single-machine and m-machine
 877 flowshop scheduling problems with learning considerations. *Infor-
 878 mation Sciences*, 179, 3885–3892.
 879
- 880 Mirsanei, H. S., Zandieh, M., Moayed, M. J., & Khabbazi, M. R.
 881 (2011). A simulated annealing algorithm approach to hybrid flow
 882 shop scheduling with sequence-dependent setup times. *Journal of*
 883 *Intelligent Manufacturing*, 22, 965–978.
 884
- 885 Moshieov, G. (2001). Scheduling problems with a learning effect. *Euro-
 886 pean Journal of Operational Research*, 132, 687–693.
 887
- 888 Moshieov, G. (2001). Parallel machine scheduling with a learning effect.
 889 *Journal of Operational Research Society*, 52, 1165–1169.
 890
- 891 Moshieov, G., & Sidney, J. B. (2003). Scheduling with general
 892 job-dependent learning curves. *European Journal of Operational*
 893 *Research*, 147, 665–670.
 894
- 895 Moshieov, G., & Sidney, J. B. (2005). Note on scheduling with general
 896 learning curves to minimize the number of tardy jobs. *Journal of*
 897 *Operational Research Society*, 56, 110–112.
 898
- 899 Nearchou, A. C. (2004). Flow-shop sequencing using hybrid simulated
 900 annealing. *Journal of Intelligent Manufacturing*, 15, 317–328.
 901
- 902 Solano-Charris, E. L., Montoya-Torres, J. R., & Paternina-Arboleda,
 903 C. D. (2011). Ant colony optimization algorithm for a bi-criteria
 904 2-stage hybrid flowshop scheduling problem. *Journal of Intelligent*
 905 *Manufacturing*, 22, 815–822.
 906
- 907 Speras, W. M. & DeJong, K. A. (1991). On the virtues of parameter-
 908 ized uniform crossover. In: *Proceedings of the fourth international*
 909 *conference genetic algorithms* (pp. 230–236).
 910
- 911 Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2007). A
 912 particle swarm optimization algorithm for makespan and total flow-
 913 time minimization in the permutation flowshop sequencing problem.
 914 *European Journal of Operational Research*, 177, 1930–1947.
 915
- 916 Toksari, M. D., & Güner, E. (2010). Parallel machine scheduling prob-
 917 lem to minimize the earliness/tardiness costs with learning effect and
 918 deteriorating jobs. *Journal of Intelligent Manufacturing*, 21, 843851.
 919
- 920 Wang, J.-B. (2007). Single-machine scheduling problems with the
 921 effects of learning and deterioration. *Omega*, 35, 397–402.
 922
- 923 Wang, J.-B., & Xia, Z.-Q. (2005). Flow shop scheduling with a learning
 924 effect. *Journal of Operational Research Society*, 56, 1325–1330.
 925
- 926 Wang, X., & Cheng, T. C. E. (2007). Single-machine scheduling with
 927 deteriorating jobs and learning effects to minimize the makespan.
 928 *European Journal of Operational Research*, 178, 57–70.
 929
- 930 Wu, C.-C. (2006). The development of a solution to the single-machine
 931 total weighted completion time problem with a learning effect. *Inter-
 932 national Journal of Management*, 23, 113–116.
 933
- 934 Wu, C.-C., Lee, W.-C., & Wang, W.-C. (2007). A two-machine flow-
 935 shop maximum tardiness scheduling problem with a learning effect.
 936 *International Journal of Advanced Manufacturing Technology*, 31,
 937 743–750.
 938
- 939 Wu, W.-H., Cheng, S.-R., Wu, C.-C., & Yin, Y. (2012). Ant colony
 940 algorithms for a two-agent scheduling with sum-Of processing times-
 941 based learning and deteriorating considerations. *Journal of Intelligent*
 942 *Manufacturing*, 23, 1985–1993.
 943
- 944 Yin, Y.-Q., Xu, D.-H., Sun, K.-B., & Li, H.-X. (2009). Some schedul-
 945 ing problems with general position-dependent and time-dependent
 946 learning effects. *Information Sciences*, 179, 2416–2425.
 947