@ Springer
Dear Author,

Here are the proofs of your article.

You can submit your corrections online, via e-mail or by fax.

For online submission please insert your corrections in the online correction form. Always
indicate the line number to which the correction refers.

You can also insert your corrections in the proof PDF and email the annotated PDF.

For fax submission, please ensure that your corrections are clearly legible. Use a fine black
pen and write the correction in the margin, not too close to the edge of the page.

Remember to note the journal title, article number, and your name when sending your
response via e-mail or fax.

Check the metadata sheet to make sure that the header information, especially author names
and the corresponding affiliations are correctly shown.

Check the questions that may have arisen during copy editing and insert your answers/
corrections.

Check that the text is complete and that all figures, tables and their legends are included. Also
check the accuracy of special characters, equations, and electronic supplementary material if
applicable. If necessary refer to the Edited manuscript.

The publication of inaccurate data such as dosages and units can have serious consequences.
Please take particular care that all such details are correct.

Please do not make changes that involve only matters of style. We have generally introduced
forms that follow the journal’s style.

Substantial changes in content, e.g., new results, corrected values, title and authorship are not
allowed without the approval of the responsible editor. In such a case, please contact the
Editorial Office and return his/her consent together with the proof.

If we do not receive your corrections within 48 hours, we will send you a reminder.

Your article will be published Online First approximately one week after receipt of your
corrected proofs. This is the official first publication citable with the DOI. Further changes
are, therefore, not possible.

The printed version will follow in a forthcoming issue.
Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the
complete article via the DOI using the URL: http://dx.doi.org/[DOI].

If you would like to know when your article has been published online, take advantage of our free
alert service. For registration and further information go to: http://www.springerlink.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be
returned to you on special request. When you return your corrections, please inform us if you would
like to have these documents returned.

Metadata of the article that will be visualized in OnlineFirst

ArticleTitle

Using heuristic algorithms to solve the scheduling problems with job-dependent and machine-dependent
learning effects

Atrticle Sub-Title

Article CopyRight

Journal Name

Springer Science+Business Media New York
(This will be the copyright line in the final PDF)

Journal of Intelligent Manufacturing

Corresponding Author Family Name Wu
Particle
Given Name Hsien-Chung
Suffix
Division Department of Mathematics
Organization National Kaohsiung Normal University
Address Kaohsiung , 802, Taiwan
Email hewu@nknucce.nknu.edu.tw
Author Family Name Lai

Particle
Given Name Peng-Jen
Suffix
Division Department of Mathematics
Organization National Kaohsiung Normal University
Address Kaohsiung , 802, Taiwan
Email
Received 13 February 2013

Schedule Revised
Accepted 8 August 2013

Abstract The multi-machine scheduling problems with job-dependent and machine-dependent learning effects are

proposed in this paper. Since it is almost impossible to obtain the analytic results for this complicated multi-
machine scheduling problems with learning effects, four heuristic algorithms are used to solve this newly
proposed model, where the variants of well-known genetic algorithm (GA), simulated annealing (SA), ant
colony optimization (ACO) and particle swarm optimization (PSO) are coded in the commercial software
MATLAB. The objective is to minimize the makespan of this new model. For this kind of scheduling problem,
the numerical experiments show that the GA and SA outperform ACO and PSO.

Keywords (separated by '-')

Scheduling problems - Genetic algorithm - Simulated annealing - Ant colony optimization - Particle swarm
optimization - Learning effects

Footnote Information

Journal: 10845

Article: 827 @ Sp ringer

Author Query Form he language of science

Please ensure you fill out your response to the queries raised below
and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please
check your typeset proof carefully against the queries listed below and mark the
necessary changes either directly on the proof/online grid or in the ‘Author’s response’
area provided below

Query Details required Author’s response

1. Kindly check and confirm the edit in the
paragraph ‘This paper is organized as
follows...” in page 2 of the manuscript.

2. Please provide a definition for the
significance of bold in the inline tables.
3. References citation ‘Lee et al., Kennedy

and Eberhart, Spears and DeJong’ have
been changed to ‘Lee and Wu, Eberhard
and Kennedy, Speras and DeJong’.
Please check and change accordingly.

Author Proof

20

21

22

23

24

25

26

27

J Intell Manuf
DOI 10.1007/s10845-013-0827-x

Using heuristic algorithms to solve the scheduling problems
with job-dependent and machine-dependent learning effects

Peng-Jen Lai - Hsien-Chung Wu

Received: 13 February 2013 / Accepted: 8 August 2013
© Springer Science+Business Media New York 2013

Abstract The multi-machine scheduling problems with
job-dependent and machine-dependent learning effects are
proposed in this paper. Since it is almost impossible to
obtain the analytic results for this complicated multi-machine
scheduling problems with learning effects, four heuristic
algorithms are used to solve this newly proposed model,
where the variants of well-known genetic algorithm (GA),
simulated annealing (SA), ant colony optimization (ACO)
and particle swarm optimization (PSO) are coded in the com-
mercial software MATLAB. The objective is to minimize
the makespan of this new model. For this kind of scheduling
problem, the numerical experiments show that the GA and
SA outperform ACO and PSO.

Keywords Scheduling problems - Genetic algorithm -
Simulated annealing - Ant colony optimization - Particle
swarm optimization - Learning effects

Introduction

The learning effects in scheduling problems have been widely
studied recently. The main reasons come from the fact that
the same kind of jobs will be repeatedly processed and the
employees or workers can improve their skills after doing the
same task for a long time.

To the best of our knowledge, the scheduling problems
with learning effects coming from machines was seemingly
not proposed in the literature. In practical situation, the
different machines might own the different learning rates.
In this paper, we consider the n-job and m-machine flow

P-J. Lai - H.-C. Wu (X))

Department of Mathematics, National Kaohsiung Normal University,
Kaohsiung 802, Taiwan

e-mail: hcwu@nknucc.nknu.edu.tw

shop scheduling problems. The learning factors come from
jobs and machines will be included simultaneously in the
scheduling problem. Therefore, we can consider three kinds
of scheduling problems with learning effects. Firstly, we may
assume that only the job-dependent learning factor is taken
into account in this problem; that is, the learning factor comes
from machines will be ignored. This problem was considered
by Moshieov and Sidney (2003). Secondly, suppose that only
the machine-dependent learning factor is taken into account
in this problem; that is, the learning factor comes from jobs
will be ignored. Thirdly, in the general case, we shall con-
sider the job-dependent and machine-dependent learning fac-
tors simultaneously. This kind of problem is really compli-
cated such that it is almost impossible to obtain the analytic
results. In this paper, we apply four heuristic algorithms that
are genetic algorithm (GA), simulated annealing (SA), ant
colony optimization (ACO) and particle swarm optimization
(PSO) to minimize the makespan of this problem.

This paper is organized as follows. In second section,
we provide the brief review for the scheduling problems
with learning effects. In third section, we introduce the new
models that simultaneously consider the job-dependent and
machine-dependent learning effects. In fourth section, we
introduce four heuristic algorithms that will be used to solve
the scheduling problems with job-dependent and machine-
dependent learning effects. In fifth section, we provide the
numerical experiments in order to minimize the makespan of
this newly proposed model.

Review for scheduling problems with learning effects
We briefly review the frequently adopted scheduling prob-

lems with learning effects in the literature. Of course, the
analytic results can be obtained for the single-machine prob-

@ Springer

g Journal: 10845-JIMS MS: 0827 [JTYPESET [DISK [_]LE []CP Disp.:2013/8/17 Pages: 11 Layout: Large ‘

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Author Proof

60

61

62

63

64

65

66

67

68

69

70

al

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

J Intell Manuf

lems. The multi-machine scheduling problems with learning
effects were seldom studied in the literature due to its com-
plication, where the machine-dependent learning effects was
also not considered. In other words, considering the machine-
dependent learning effects will increase the complication of
this kind of problem. Therefore, we can use the heuristic
algorithms to solve this kind of new problem.

Single-machine scheduling problems

Suppose that there are n jobs available at time zero. We denote
by p; the normal processing time of job i. Because of the
learning effects, the actual processing times of the later jobs
in a schedule are smaller than their normal processing times.
Therefore, Biskup (1999) proposed that the actual processing
time of job i, when it is scheduled at the rth position in the
schedule, can be given by

pirzpi'ra» (1)

where @ < 0 is the learning index. This can also be inter-
preted as the position-dependent learning effects.

Wang and Xia (2005) proposed that the actual processing
time p;, can be given by

pir = pi - (B —ar), (2)
where 8 and o denote a constant number and a learning ratio,
respectively.

Koulamas and Kyparisis (2007) assumed that the actual
processing time p;, can be given by

r—1 o n o
=1 Plk —r Plk
pir:l,i.(l_M) =pi.(M) A

ZZ:I Dk ZZ:I Dk

where pj;) denotes the normal processing time occupying the
kth position in the schedule and o > 1.

The volume-dependent processing time can also affect the
learning effects. The learning effects on the processing time
of a job were assumed to depend on the number of jobs that
are processed before the current job. Cheng and Wang (2000)
proposed that the actual processing time p; of job i can be
modelled as follows:

pi = pi — a; - min{n;, no;} 4

fori = 1,...,n, where «; is the learning coefficient, n; is
a nonnegative integer with 0 < n; < n — 1 indicating the
number of jobs processed before job i in the schedule (i.e.,
n;+ 1 is the position of job i), and ng; is a nonnegative integer
with ng; < n — 1 indicating a threshold value.

Another volume-dependent learning effects based on the
job processing times were also considered by Kuo and Yang
(2006¢,b). Since the employees or workers can learn more
if they perform a job with a longer processing time; that is,
the actual processing time of a job is affected by the total

@ Springer

processing time of the previous jobs, they proposed that the
actual processing times can be given by

Pi ifr=1
o : 5
bir <(P[1] +po+-+peD®opi ifr =2,)
or
Pi ifr =1
ir = . 6
Pir [(1+P|11+p[21+-~+p|r1)°"pi itr =2, ©

where o < 0is alearning index, and p[;] denotes the normal
processing time occupying the kth position in the schedule.
The learning effects presented in (1), (2) and (3) are
job-independent. However, in the realistic situations, the
improvement in the production process of some jobs may
be faster than that of others, or the different jobs are affected
depending on their positions in the schedule. Therefore, it
is reasonable to study the scheduling problem with job-
dependent learning effects. Moshieov and Sidney (2003) pro-
posed that the actual processing time p;, can be given by

pir = pi -1, @)

where «; is a job-dependent negative parameter. Bachman
and Janiak (2004) also introduced the actual processing time
pir that can be given by

Pir = Pi — i, ®)

where «; denotes a learning ratio.

Cheng et al. (2008) took the product of the models
proposed by Biskup (1999) and Koulamas and Kyparisis
(2007), respectively, to introduce a model that considered the
position-based and sum-of-processing-timed-based learning
effects in which the actual processing time of a job is a func-
tion of the total normal processing times of the jobs already
processed and of the job’s scheduled position with the form
given by

r—1 ai
piry=pi-\1- —an:l D) e,
Zk:l Pk

The model proposed by Lee and Wu (2009) generalized the
model of Kuo and Yang (2006b), which is given by

r—1 a
Pitr] = Pi - (q(r) +> P[k]) : ©)

k=1

Yin et al. (2009) also generalized the model proposed by
Cheng et al. (2008), which is given by

r—1
pitr = pi - f (Z P[k]) - g(r),
k=1

where the functions f and g satisfy some suitable conditions.
Recently, based on the model of Yin et al. (2009) and Lai and

(10)

g Journal: 10845-JIMS MS: 0827 [JTYPESET [DISK [_]LE []CP Disp.:2013/8/17 Pages: 11 Layout: Large ‘

105

106

107

108

109

110

111

112

113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

142

Author Proof

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

17

172

173

174

175

176

177

178

179

180

181

182

183

184

185

J Intell Manuf

Lee (2011) proposed a more general model given by

r—1
Pilr] = Pi - f(Z,Bk * PIk]» V),
k=1

where the function f with two arguments satisfies some suit-
able conditions.

The goal of unrestricted common due date problem is
to jointly minimize the weighted earliness, tardiness and
completion time. Here the unrestricted common due date
d is regarded as a decision variable whose value is going
to be determined. Let C;, E; = max{0,d — C;} and T; =
max{0, C; — d} be the completion time, earliness and tardi-
ness of job i, respectively. We also denote by w;, wy and
w3 the per time unit penalties for earliness, tardiness and the
completion time, respectively. Then we shall find a schedule
7 that minimizes the following objective function:

(11

flr) = Z(W]Ei + waT; + w3Cy).

i=1

12)

By introducing the leaning effects in (1), Biskup (1999)
showed that the unrestricted common due date problem can
be solved as an assignment problem which takes O (n3) time.
In other words, the unrestricted common due date problem
with learning effects is polynomially solvable. Moshieov
(2001) considered the following objective function

fld,m) =" (wid +wrE; + wiTy) (13)

i=1
with learning effect given in (7) and the objective function in
(13). Also, the corresponding assignment problem is solved
to obtain the optimal schedule.
Using the standard pair-wise interchange arguments, the
following results were obtained.

e Moshieov (2001) showed that the makespan minimization
problem with learning effects given in (1) can be optimized
by the SPT rule.

e Wang and Xia (2005) showed that the makespan mini-
mization problem with learning effects given in (2) can be
optimized by the SPT rule.

e Koulamas and Kyparisis (2007) showed that the makespan
minimization problem with learning effects given in (3)
can be optimized by the SPT rule.

On the other hand, Bachman and Janiak (2004) showed
that the makespan minimization problem with learning
effects given in (1) can be solved in O(n?) times by an
assigning procedure, and the optimal schedule considering
the learning effects given in (8) can be found in O(nlogn)
times by sequencing jobs in nondecreasing order of the learn-
ing ratio «;. Moshieov and Sidney (2003) considered the

learning effects given in (7). Kuo and Yang (2006c) consid-
ered the learning effects presented in (5) and shows that the
optimal schedule that minimizes the makespan satisfies the
following condition: the sequence of all jobs except for the
first processed job is the smallest processing time first (SPT
rule). Bachman and Janiak (2004) showed that the problems
1¢i, pir = pi — &ir|Cmax and 1|¢;, pir = pi - r%|Cmax are
strongly NP-hard.

One of the elementary results of single-machine schedul-
ing problem is that the sum of flowtimes of all jobs is min-
imized by sequencing the jobs according to the SPT rule.
Incorporating the learning effects into this problem, the fol-
lowing results were obtained.

e Biskup (1999) showed that the total completion time min-
imization problem with learning effects given in (1) is
optimized by the SPT order.

e Wang and Xia (2005) showed that the total completion
time minimization problem with learning effects given in
(2) is optimized by the SPT rule.

e Koulamas and Kyparisis (2007) showed that the total
completion time minimization problem with learning
effects given in (3) is optimized by the SPT rule.

e Kuo and Yang (2006b) showed that the total completion
time minimization problem with learning effects given in
(5) is optimized by the SPT rule.

Using the job interchanging technique, Bachman and Janiak
(2004) also proved many interesting results.

Moshieov and Sidney (2003) considered the learning
effects given in (7). On the other hand, Wu (2006) used the
branch-and-bound method to minimize the total weighted
completion time under the learning effects given in (1). The
objective is to find an optimal schedule 7z* such that

n n
Z w;Ci (™) < z w; C;i ()
i=1 i=1

for any schedule 7, where w; are positive real numbers for
i=1,...,n.

Let d; be the due date of job i. The lateness is defined
by L; = C; — d;. The maximum lateness is defined as
Lmax = max{Ly, ..., L,}. The objective is to minimize the
maximum lateness Lnx. It is well-known that the conven-
tional maximum lateness minimization problem is solvable
by the earliest due date rule (EDD rule). However, Cheng
and Wang (2000) showed that, under the consideration of
learning effects given in (4), this problem becomes NP-hard
in strong sense. Cheng and Wang (2000) also showed that,
although the general problem is NP-hard in the strong sense,
there are two special cases that can be solved in polynomial
time. Let d denote the common due date and U; be a 0-1
variable, where U; = 1 if job i is late, i.e., C; > d, and

@ Springer

& | Journal: 10845-JIMS MS: 0827 [TYPESET []DISK [[]LE [JCP Disp.:2013/8/17 Pages: 11 Layout: Large ‘

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

Author Proof

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

264

265

266

267

268

269

270

27

273

274

275

276

277

278

279

280

281

282

283

J Intell Manuf

U; = 0O otherwise, i.e., C; < d. Moshieov and Sidney (2005)
also considered the single-machine scheduling problem to
minimize the number of tardy jobs.

We denote by T7C = >/, C; the total completion time
and by TADC = >7i_ >7i_; ICi — C;]| the total absolute
differences in completion times. Let § € [0, 1]. The objective
is to find a schedule that minimizes the following measure

f(@)y=6-TC+(1—-06)-TADC.

Moshieov (2001) considered the learning effects specified
in (1) and obtain the optimal schedule by solving its cor-
responding assignment problem. Under the learning effects
given in (1), Lee et al. (2004) used the branch-and-bound
algorithm to find a schedule that minimizes the some of total
completion time and the maximum tardiness, i.e., to find a
schedule that minimizes the following objective function

min A - TC(w) + (1 — L) - Tnax (),

where 0 < A < 1, TC() = >}, Ci() is the total com-
pletion time and Tyax () is the maximum tardiness of a
schedule .

Suppose that there are n jobs to be classified into m groups
and to be processed on a single machine. All jobs are available
at time zero. It is assumed that there is no setup time between
any two consecutive jobs in the same group. However, the
group setup times are required. The group setup times are
assumed to be sequence-independent. Moreover, the normal
processing time of a job is incurred if the job is scheduled
first in a sequence of a certain group. Let J;; denote the jth
jobin group G; and p;j, be the actual processing time of J;;
that is scheduled in the rth position in a sequence in group
G;. Kuo and Yang (2006a) considered the time-dependent
learning effects defined by

pijr = (L+ pipiy + -+ + pipr—1D" pij, (14)

where «; is a constant learning index in a certain group
Gi, pij is the normal processing time of J;; in the origi-
nal sequence and p;) is the normal processing time of J;]
that is scheduled in the kth position in a sequence in group
G;.

For the scheduling problems with deteriorating jobs, the
actual processing time of a job in a schedule is modeled as an
increasing function of its starting time due to deterioration
effects. This model reflects a variety of real-life situations
such as steel production, resource allocation, fire fighting,
maintenance or cleaning, in which any delay in processing a
job may result in an increasing effort to accomplish the job.
In order to obtain the analytic results, most researchers model
the actual processing time of a job as a linear or piecewise
linear increasing function of its starting time. For example,
the actual processing time can be assumed as p; + f;¢, where
pi is the normal processing time, f; is the growth rate of the
processing time, and ¢ is the starting time, of job i. Wang and

@ Springer

Cheng (2007) incorporated the learning effects into this kind
of problem. If job i is scheduled in position r in a sequence,
then its actual processing time is given by

pir(t) = (po + Bit) - r%,

where po is a common normal processing time which is
incurred if job i is scheduled first in a sequence, 7 is the start-
ing time of job i to be processed, f; is the growth rate of the
processing time of job i, which is the amount of increase in
the processing time of job i per unit delay in its starting time
due to the deterioration effects, and « is the learning index.
On the other hand, Lee (2004) and Wang (2007) also incorpo-
rated the learning effects into the scheduling problems with
deteriorating jobs. If job i is started at time ¢ and scheduled
in position r in a sequence, then the actual processing time
is given by

pir(®) = pi - (@) + B - 1),

where ¢(¢) is an increasing function.

15)

Multi-machine scheduling problems

Suppose that there are n jobs to be processed on two
machines, where each job requires to be processed on
machine 1 first and then on machine 2. We denote by «; and
b; the normal processing times of job i on machine 1 and 2,
respectively. For the job-position-based learning effects, Lee
and Wu (2004) and Wu et al. (2007) proposed that the actual
processing times can be given by

(16)

air = a4 r¢ and b; = b; -r®

with o < 0. Thus the completion time of job scheduled in
the rth position is given by

,
Ciry = max { > agj1- j* Cr—y t + by - 1%
j=1

Under the learning effects given in (16), Wu et al. (2007)
provided a heuristic algorithm using the SA approach to min-
imize the maximum tardiness, and Lee and Wu (2004) used
the branch-and-bound algorithm to minimize the total com-
pletion time.

On the other hand, Koulamas and Kyparisis (2007) pro-
posed that the actual processing times can be given by

r—1 o
air = a; -(1 . %) and by, = b; -
k=1

_ o
- > bk
Zk:] b

which o > 1. Two special cases that are called ordered job
processing times and proportional job processing times are
also investigated.

7

g Journal: 10845-JIMS MS: 0827 [JTYPESET [DISK [_]LE []CP Disp.:2013/8/17 Pages: 11 Layout: Large

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

Author Proof

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

J Intell Manuf

For the problem of ordered job processing times, we
assume a; < b; for all jobs i = 1,...,n and b; < by
whenever a; < g for any two jobs j and k. In this case,
the problem is denoted by F2|LE, ord|y (i), where y is
an objective function. For the problem of proportional job
processing times, we assume b; = ca; for all jobs i =
1,...,n, where ¢ > 1 is a constant factor. In this case, the
problem is denoted by F2|LE, prp|y (7). Under these set-
tings, Koulamas and Kyparisis (2007) also obtained many
interesting results.

For the n-job and m-machine scheduling problems with
learning effects, we denote by p;; the normal processing time
of job i on machine j and p;;, the actual processing time of
job i on machine j that is scheduled in position ». Wang and
Xia (2005) proposed two models that are given by
pijr = pij - (B —ar) and p;j, = pij - r® (18)
fori,r =1,...,nand j = 1,...,m, where B is a constant
number and « is a learning index. It is assumed that 8 is
a positive integer. Since the processing time is positive, for
model (18), itis also assumed that 8 — (n + 1) - o > O.

For the problem Fm|| Y C;, Gonzalez and Sahni (1978)
provided an approximation algorithm in order of increas-
ing L; = 37 pij and show that it has worst-case per-
formance ratio, i.e., this algorithm is guaranteed to pro-
duce a schedule with cost no more than m times the cost
of an optimal schedule. This heuristic algorithm will also
be referred as SPT rule. Therefore, Wang and Xia (2005)
used the SPT rule in order of L; as an approximate algo-
rithm for the problem Fm|p;;, = pij - (B — ar)] > C;,and
obtained some interesting results. Wang and Xia (2005) also
used the SPT rule as an approximate algorithm to problem
Fm|pijr = pij - (B — ar)|Cmax, and obtained some other
interesting results.

Parallel machine scheduling problems

The parallel machine scheduling with learning effect was
studied by Moshieov (2001). We firstly consider n jobs to be
processed on m parallel identical machines. We assume that
m < n.Jobs are numbered such that p; < pr < --- < p,.
With no learning effects, the problem Pm||Cpax is known to
be NP-hard even for two machines. Clearly, for the learning
effects given in (1), the problem Pm|p;r = p; - r*|Cmax
is also NP-hard, since the special case ¢ = 0 is iden-
tical with the conventional version. However, minimizing
flow time on parallel identical machines, i.e., Pm|| > C;,
is solved by the SPT rule. When learning effect in (1) is
assumed, Moshieov (2001) showed that an optimal schedule
for Pm|pir = pi - r*| > C; consists of SPT sequences on
each machine. The problem that 7 jobs are to be processed on
m unrelated parallel machines was also studied by Moshieov

and Sidney (2003) by formulating it as an assignment prob-
lem.

Multi-machine scheduling problems with learning
effects

Now, we shall consider the n-job and m-machine flow shop
scheduling problems with learning effects. Given n jobs and
m machines, each job consists of m operations. The mth oper-
ation of each job has to be processed on the mth machine.
The (m + 1)th operation starts only if the mth operation has
been completed. Each machine is assumed to process one
operation at a time with no precedence constraints between
jobs. Operations are non-preemptive and are available for
processing at time 0 on machine 1. Let p;; be the normal
processing time for job i on machine j, i = 1,...,n and
j =1,..., m. In this paper, the learning factors come from
jobs and machines will be included in the scheduling prob-
lem. Therefore, we can consider three kinds of scheduling
problems with learning effects.

Job-dependent learning effects

Suppose that only the job-dependent learning factor is taken
into account in this problem; that is, the learning factor comes
from machines will be ignored. We denote by §; the job-
dependent parameter for jobi = 1, ..., n, where §; are neg-
ative real numbers. Then the actual processing time of job i
on machine j scheduled in position r is given by

pijr = pij - 1. (19)

This problem was considered by Moshieov and Sidney
(2003).

Machine-dependent learning effects

Suppose that only the machine-dependent learning factor is
taken into account in this problem; that is, the learning fac-
tor comes from jobs will be ignored. We denote by 7n; the
machine-dependent parameter for machine j = 1,...,m,
where n; are negative real numbers. Then the actual process-
ing time of job i on machine j scheduled in position r is
given by

pijr = pij - r'. (20)
To the best of our knowledge, this problem has not been
investigated in scheduling problems with learning effects.
Job-dependent and machine-dependent learning effects

In the general case, we shall consider the job-dependent
and machine-dependent learning factors simultaneously. We

@ Springer

& | Journal: 10845-JIMS MS: 0827 [TYPESET []DISK [[]LE [JCP Disp.:2013/8/17 Pages: 11 Layout: Large ‘

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

Author Proof

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

J Intell Manuf

denote by A;; the job-machine-dependent parameter for job
i on machine j, where ;; are negative real numbers. Then
the actual processing time of job i on machine j scheduled
in position r is given by

Pijr = pij - 1. 1)

For example, we may take A;; = 8; + n;. This problem has
also not been investigated in this research field so far.

For convenient discussions, Egs. (19), (20) and (21) are
unified as the following formula

pijr = pij -, (22)

where ¢;; is a learning factor defined below:

8; if only the job-dependent learning effects
are considered

n; if only the machine-dependent learning
effects are considered

Ajj if the job-dependent and machine-dependent
learning effects are considered.

Gij =

(23)

Design of heuristic algorithms

We shall use four different heuristic algorithms that are SA,
GA, ACO, and PSO to search for the “best solution” of the
scheduling problems proposed in this paper. All of the algo-
rithms adopted in this paper are also based on the concept
of random keys proposed by Bean (1994) to generate the
individuals.

Simulated annealing

The idea of SA algorithm arises from the physical anneal-
ing of solids, and it has been successfully applied to com-
binatorial problems by Kirkpatrick et al. (1983). SA has the
advantage that it can avoid be trapped in a local optimum
by occasionally allowing “hill-climbing moves”. This algo-
rithm, although it was invented long time ago, still works
very well and very efficiently in many problems up to now.
In literature, it is often used to compare with other more
fashioned heuristic algorithms. In this paper, we adopt the
standard type of SA algorithm. The reader can refer to Kirk-
patrick et al. (1983) for the main steps of this algorithm.
Nearchou (2004) and Mirsanei et al. (2011) used SA to solve
some other scheduling problems.

Genetic algorithms
GA has a lot of formulation in literature. The main steps

adopted in this paper are the elitism, uniform crossover, and
immigration. We shall randomly generate N chromosomes

@ Springer

in the initial population, and use the concept of random
keys proposed by Bean (1994) to generate the chromosomes.
Suppose that we consider the five-job problem. Then the
length of chromosome will be five. Therefore, we gener-
ate five random numbers in (0, 1) for each chromosome.
The mapping to the job sequence is accomplished by sorting
the random numbers and sequencing the jobs in ascending
order. For example, if we have obtained the random num-
bers (0.46,0.91,0.33,0.75,0.51), ie., 1 <« 0.46,2 —
091, 3 < 0.33, 4 < 0.75 and 5 — 0.51, then it would
represent the chromosome (job sequence) (3,1,5,4,2), since
0.33 < 0.46 < 0.51 < 0.75 < 0.91.

For the crossover, we are going to invoke the parame-
terized uniform crossover proposed by Speras and DeJong
(1991). Suppose that two chromosomes (0.46, 0.91, 0.33,
0.75,0.51) and (0.84, 0.32, 0.64, 0.04, 0.48) are chosen ran-
domly from the old population. At each gene, we toss a faired
coin to select which parent will contribute the allele. We can
also consider the biased coin to perform this crossover. For
example, the probability of tossing a head may take as 0.7.
In this paper, we take the probability of tossing a head as 0.5.
Now we assume that a coin toss of head selects the allele
from the first parent, and a tail chooses the allele from the
second parent, which forms the first offspring. The second
offspring is obtained in the reverse way as obtaining the first
offspring. We provide a simple example given below:

Coin toss T H T H T

Parent 1 0.46 091 0.33 0.75 0.51
Paremt 2 0.84 0.32 0.64 0.04 048
Offspring 1 0.84 0.91 0.64 0.75 0.48
Offspring2 0.46 0.32 0.33 0.04 0.51

Then the two offsprings can be obtained by sorting the ran-
dom numbers and sequencing the jobs in ascending order.

Instead of performing mutation, we employ the concept
of immigration in this paper. In other words, at each gener-
ation, more new members of the population are randomly
generated from the same distribution. In this paper, we
take the uniform (0,1) random variate. The stopping crite-
rion will be determined by specifying the maximal genera-
tion.

Finally, the reproduction is accomplished by using the
elitist strategy. We choose the best chromosomes (e.g., 10 %
of the population size) from one generation to the next. The
elitist strategy is frequently adopted by different variants of
GA:s.

Now we briefly describe the entire evolution procedure.
Let P; be the family of chromosomes in the rth genera-
tion, and |P;| denote the population size of P;. The next
generation is made of a% best chromosomes from P;, b%
chromosomes for taking crossovers, and ¢% chromosomes
generated randomly (i.e., performing immigration), where

g Journal: 10845-JIMS MS: 0827 [JTYPESET [DISK [_]LE []CP Disp.:2013/8/17 Pages: 11 Layout: Large

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

Author Proof

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

J Intell Manuf

a + b + ¢ = 100. The computational procedure is described
as below:

e Step 1. Initialize the population by generating the random
numbers.

e Step 2. Calculate the completion time of every job in
each schedule selected from the population.

e Step 3. Calculate the fitness function f () for each
schedule .

e Step 4. Choose a - 0.01 - | P;| best chromosomes as the
members in the next generation.

e Step 5. Choose b - 0.01 - | P;| chromosomes to perform
crossover and produce the members in the next genera-
tion.

e Step 6. Randomly generate ¢ - 0.01 - | P;| chromosomes
as the members in the next generation like performing
immigration.

e Step 7. Save the best schedule and fitness value obtained
so far.

e Step 8. If the maximal generation is reached, then STOP,
otherwise go to Step 2. to perform another iteration.

Ant colony optimization

The ACO proposed by Dorigo and Stiitzle (2004) has also
been recognized as an efficient algorithm to solve the com-
binatorial optimization problem. Therefore, a lot of different
variants of ACO have been proposed based on the differ-
ent purposes of combinatorial optimization problems. For
example, Lai and Wu (2009) used one of the variants to
solve the scheduling problems with fuzzy-valued process-
ing times. Also, Arnaout et al. (2010) and Solano-Charris
et al. (2011) used the ACO to solve some other scheduling
problems.

The main steps adopted in this paper will be described
below. The probability, currently at node i, for choosing next
node j is given by

(k) _ Tij
Pij = <o
ZIEN(k) Til

i

if j e N®, (24)

where Nl.(k) is the neighborhood of node i except for the
predecessor of node i when ant k is staying at node i, and 7;;
denotes the amount of pheromone currently deposited in the
edge (i, j).

Dorigo and Stiitzle (2004) modified the random propor-
tional rule and proposed a so-called pseudo-random propor-
tional rule that is given below: when an ant k is now located
at city i, it moves to a city j according to the following
rule

(25)

: argmax,_,® Tl ifg < qo
J = { .
J otherwise,

where ¢ is a random number, go € [0, 1] is a parameter, and
J is a random variable selected according to the probability
distribution given by (24).

Only the best-so-far tour is allowed to deposit the
pheromone after each iteration. Therefore, the pheromone
update rule for the tour 7 is given by

zj < (1= p) - 1ij +p - AT (26)

for the edge (i, j) in T®, where Atl.(}’s) is given by

N if edge (i, j)isin T®
1(Crnax)

A fl.(};)s) =
0 otherwise

27)

for some constant « in R.

In addition to the global pheromone update rule in (26),
Dorigo and Stiitzle (2004) also suggested a local pheromone
update rule that will be applied after all K ants having finished
the tour construction. For edge (i, j) in some tour 7} that is
constructed by ant k, the update rule is given by

7j < (1 =8)1; +§ - 70, (28)

where £ € (0, 1) and ¢ is set to be the initial pheromone.
Now, the computational procedure is summarized below.

e Step 1. Initialize K artificial ant tours by randomly gen-
erating the random numbers in {1, ..., n}.

e Step 2. Initialize the pheromone trails by depositing a
constant value p on all edges.

e Step 3. Construct the artificial ant tours according to the
rule presented in (25).

e Step 4. Evaluate the objective function values of sched-
ules determined by the artificial ant tours.

e Step 5. Perform the local pheromone trails updating rule
according to (28).

e Step 6. Identify the best-so-far tour.

e Step 7. Perform the global pheromone trails updating rule
according to (26).

e Step 8. If the pre-determined maximal iteration is
reached, then STOP and return the “optimal schedule”;
otherwise we go to Step 4 to perform another iteration.

Particle swarm optimization

The PSO has also been used to solve the scheduling prob-
lems by referring to Tasgetiren et al. (2007) and the refer-
ences therein. The PSO is based on the social interaction
and communication such as bird flocking and fish school-
ing. The PSO is different from other evolutionary methods
in a way that it does not use the filtering operation, e.g.,
crossover, mutation and so on. The members of the entire
population are maintained through the search procedure so

@ Springer

& | Journal: 10845-JIMS MS: 0827 [TYPESET []DISK [[]LE [JCP Disp.:2013/8/17 Pages: 11 Layout: Large ‘

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Author Proof

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

J Intell Manuf

that the information can be socially shared among individ-
uals to conduct the search direction towards the best posi-
tion in the search space. The PSO was originally introduced
by Eberhard and Kennedy (1995). Tasgetiren et al. (2007)
introduced the smallest position value (SPV) rule borrowed
from the random key representation in Bean (1994) to con-
vert the continuous position value to a discrete job permuta-
tion.

The main steps adopted in this paper will be described
below. In the initial population, every particle is a list of n
random numbers between 0 and 1, where 7 is the job number.
The SPV rule applies to each particle to find its corresponding
permutation. The ith particle in the 7th generation is denoted
as
X0 = (5958, .. x2).

The initial continuous position values of the particle is pro-
duced randomly:

0
Xij~ = Xmin + (Xmax — Xmin) " 71
where xmin = 0, xmax = 4 and r; is a uniform random
number between 0 and 1. Initial velocities are established in

a similar way:

)
Vij~ = VUmin + (Vmax — Umin) * 72
where vmin = —4, Vmax = 4 and r; is a uniform random

number between 0 and 1. We denote by

(1) @ (1) (1)
P = (pil ’pi2""’pin)

the personal best particle in the #th generation which is ini-

tialized by p,.((l)) = x,.(?) for 1 <i < n.We also denote by

G = (g g, 8l")

the global best particle in the ¢th generation which is initial-
ized as the best particle in the initial population.

The inertia weight needs to be updated according to the
following rule

w® = =D . g

where 8 = 0.975 is the decrement factor and w(? is set to be
0.9 and never decreases below 0.4. The velocity is updated
according to the following rule

vi(]t') =D ey (Pi(]t‘_l) - xi(]['_l))

ij
+co 19 (g;t_l) — xg_l))

where c1 and ¢2 are acceleration coefficients set to be 2, and
r1 and r2 are uniform random numbers between 0 and 1.

@ Springer

Finally, the position is updated according to the following
rule

(" _

(=D
ij =X

(1)
X ij +vij.

Now, the computational procedure is summarized below.

Step 1. Initialization and evaluation.

Step 2. Update iteration counter.

Step 3. Update inertia weight.

Step 4. Update velocity

Step 5. Update position

Step 6. Evaluation

Step 7. Update personal best

Step 8. Update global best

Step 9. If the stopping criterion is satisfied then stop.
Otherwise go to STEP 2.

Numerical examples

We consider n-job and m-machine flow shop scheduling
problem. Recall that Cy,; is the completion time of job J;
on machine j. We denote by C, the completion time of job
Ji,ie.,Cy. = C,, which means the completion time on the
last machine. We sometimes simply write C; as the comple-
tion time of job i. Now the makespan Cy,y is defined as the
last job to leave the system, i.e., Cpax = max {Cy, ..., Cp,}.
In other words, we see that Cnax = Cj,,n. The purpose is
to minimize the makespan. Therefore, we want to solve the
following problem

min () = Chax-
mwell

Now, we are in a position to perform the computational
experiments. All of the algorithms are coded in the com-
mercial software MATLAB and are executed in a personal
computer with Intel(R)Core(TM)2 6300 1.86, 1.87 GHz and
1.99 GB RAM on Windows XP. We test the proposed algo-
rithms on flowshop scheduling problem with job-dependent
and machine-dependent learning effects. We consider three
machines and three different numbers of jobs n = 20, n =
50 and n = 100.

Choosing the values of parameters is time-consuming and
experience-depending. We first determine the range of pos-
sible values of each parameter based on the previous expe-
rience or well-known adoption in literature. For example,
the ranges of parameters of GA and ASO refer to Lai and
Wu (2008, 2009), and the ranges of parameters of PSO are
adapted from Tasgetiren et al. (2007). Also, we still have to
make preliminary trial among such ranges by testing different
values for every parameter in order to determine the best suit
among them. When the best fitness does not improve for 10
generations, the algorithm is stopped, which is the stopping

g Journal: 10845-JIMS MS: 0827 [JTYPESET [DISK [_]LE []CP Disp.:2013/8/17 Pages: 11 Layout: Large

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

Author Proof

6

2

5

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

71

712

713

714

715

716

77

718

J Intell Manuf

criterion adopted in this paper. Now, the values of parameters
are shown below.

(i) For the different job sizes, we take the same values of
parameters of ACS, which are listed below: generation
number is 300, population size is 200, p is 0.2, & is
0.6, pseudo-random number is 0.8, « is 40, and initial
pheromone is 0.005.

(ii) For the different job sizes, we take the same values of
parameters of GA, which are listed below: generation
number is 2,000, population size is 500, crossover rate
is 0.8, elitist rate is 0.1, and mutate rate is 0.1.

(iii) The values of parameters of PSO are listed below.

e job numbers n = 20: generation number is 1,000,
population size is 500, the acceleration coefficient is
2.5, initial inertial weight is 0.8, and the decrement
factor is 0.975.

e job numbers n = 50 and n = 100: generation num-
ber is 2,000, population size is 500, the acceleration
coefficient is 2.5, initial inertial weight is 0.8, and the
decrement factor is 0.975.

(iv) The values of parameters of SA are listed below.

e job numbers n = 20: generation number is 10, 000,
L =0.1and
__ current iteration number

generation number

e jobnumbersn = 50andn = 100: generation number
is 100000, L = 0.1 and

N current iteration number

generation number

For each case of different job size, a set of 20 instances of
job processing times associated with the job-dependent and
machine-dependent learning indices are randomly generated.

e The job processing time on machines 1, 2 and 3 are gen-
erated from the uniform distribution between the integers
1 and 50.

e The job-dependent and machine-dependent learning
indices are generated from the uniform distributions
between —0.2 and 0.

Because the heuristic algorithms are kind of random search,
each instance is run 5 times. We present the best one among
5 times and the mean of them. For each heuristic algo-
rithm, we execute 20 experiments. The average CPU time
for 20 experiments is reported. Now, the experimental results
are shown in the following tables, where the CPU time
is reported in average with second as unit for all experi-
ments.

Job numbers 20
Experiments ACO GA PSO SA

Mean Min Mean Min Mean Min Mean Min
Exp.1 586 581 578 578 583 579 585 579
Exp.2 605 605 603 603 604 603 604 604
Exp.3 550 548 542 542 543 542 542 542
Exp.4 617 616 612 612 613 612 612 612
Exp.5 494 490 480 480 482 481 481 480
Exp.6 576 570 565 565 565 565 565 565
Exp.7 518 517 513 513 515 514 515 514
Exp.8 549 548 546 546 547 546 546 546
Exp.9 514 512 498 498 500 499 498 498
Exp.10 518 516 499 499 503 501 500 499
Exp.11 530 529 524 524 528 524 524 524
Exp.12 525 522 494 494 501 495 494 494
Exp.13 502 501 499 499 499 499 499 499
Exp.14 440 440 436 435 436 435 436 436
Exp.15 517 516 511 511 511 511 511 511
Exp.16 542 540 531 531 533 531 532 531
Exp.17 572 571 564 564 56 564 564 564
Exp.18 583 579 555 555 557 556 556 556
Exp.19 516 515 514 514 515 514 514 514
Exp.20 521 520 518 518 520 519 519 519
Average CPU 44.4 38.3626 36.9812 0.6532
time (s)
Job numbers 50
Experiments ACO GA PSO SA

Mean Min Mean Min Mean Min Mean Min
Exp.1 1,048 1,042 1,011 1,010 1,018 1,013 1,011 1,011
Exp.2 1,076 1,073 1,057 057 1,064 1,063 1,057 1,057
Exp.3 1,064 1,054 1,021 1,019 1,029 1,025 1,019 1,019
Exp.4 1,075 1,066 1,037 1,037 1,045 1,038 1,034 1,034
Exp.5 1,038 1,034 1,004 1,004 1,008 1,006 1,005 1,005
Exp.6 1,095 1,085 1,055 1,055 1,064 1,062 1,062 1,055
Exp.7 926 924 894 893 903 899 894 893
Exp.8 1,123 1,111 1,087 1,087 1,091 1,089 1,088 1,088
Exp.9 977 970 936 936 945 939 935 934
Exp.10 1,063 1,053 1,033 1,033 1,040 1,037 1,033 1,033
Exp.11 1,003 998 972 971 977 975 972 972
Exp.12 1,038 1,036 1,013 1,013 1,019 1,015 1,014 1,014
Exp.13 1,121 1,115 1,078 1,077 1,084 1,081 1,078 1,078
Exp.14 1,173 1,163 1,123 1,122 1,131 1,127 1,130 1,123
Exp.15 1,087 1,079 1,060 1,060 1,064 1,062 1,062 1,061
Exp.16 1,157 1,153 1,131 1,128 1,141 1,138 1,131 1,128
Exp.17 1,063 1,060 1,044 1,043 1,050 1,047 1,043 1,042
Exp.18 1,011 1,005 980 978 991 986 977 977
Exp.19 1,002 995 969 969 975 969 970 969
Exp.20 974 971 950 949 955 952 951 949
Average CPU 152.2905 94.6624 94.772 10.25
time (s)

@ Springer

& | Journal: 10845-JIMS MS: 0827 [TYPESET []DISK [[]LE [JCP Disp.:2013/8/17 Pages: 11 Layout: Large ‘

Author Proof

719

720

721

722

723

724

725

726

728

729

730

731

732

733

734

735

736

737

738

739

740

J Intell Manuf

Job numbers 100

Experiments ACO GA PSO SA

Mean Min Mean Min Mean Min Mean Min
Exp.1 2,019 2,010 1,961 1,960 1,982 1,968 1,961 1,961
Exp.2 1,843 1,838 1,782 1,785 1,803 1,795 1,785 1,785
Exp.3 1,896 1,889 1,844 1843 1,865 1,860 1,847 1,841
Exp.4 1,992 1,988 1,921 1,921 1,945 1,941 1,920 1,920
Exp.5 1,751 1,744 1,685 1,683 1,708 1,701 1,689 1,681
Exp.6 1,944 1936 1,864 1,863 1,883 1,878 1,864 1,862
Exp.7 1,817 1,809 1,747 1,745 1,766 1,756 1,741 1,738
Exp.8 2,080 2,073 2,028 2,027 2,053 2,042 2,034 2,028
Exp.9 1,995 1,992 1,915 1,913 1939 1,928 1,915 1914
Exp.10 1,776 1,771 1,722 1,721 1,742 1,735 1,720 1,718
Exp.11 1,820 1,812 1,753 1,751 1,775 1,768 1,751 1,750
Exp.12 1,745 1,735 1,673 1,671 1,697 1,691 1,670 1,670
Exp.13 1,872 1,857 1,815 1,814 1,832 1,827 1,814 1,814
Exp.14 1,807 1,794 1,748 1,748 1,769 1,756 1,748 1,745
Exp.15 1,751 1,742 1,688 1,685 1,710 1,699 1,684 1,684
Exp.16 1,965 1,961 1,902 1,901 1918 1,906 1,902 19,02
Exp.17 1,947 1,943 1,900 1,899 1917 1,909 1,908 1,900
Exp.18 1,876 1,871 1,812 1,811 1,829 1,822 1,812 1,811
Exp.19 1,832 1,829 1,781 1,778 1,794 1,791 1,780 1,779
Exp.20 1,779 1,764 1,718 1,716 1,736 1,727 1,718 1,715
Average CPU 449.0344 1,90.6218 190.8124 16.8968
time (s)

The experiments show that the GA outperforms the other
heuristic algorithms for the job sizes of 20 and 50. How-
ever, for the job size of 100, the SA shows the best results in
the search domain. Because the searched results of heuris-
tic algorithms depend heavily on the initial values of para-
meters and the types of problems, the performance for the
different heuristic algorithms presented in this paper cannot
apply to the other combinatorial optimization problems. In
other words, the efficiency of different heuristic algorithms
is problem-dependent.

Conclusion

The main purpose of this paper is to propose a new model
for the multi-machine scheduling problems by simultane-
ously considering the job-dependent and machine-dependent
learning factors. Since this general problem is really compli-
cated, we solve it by using four popular heuristic algorithms
in literature, which are SA, GA, ACO and PSO etc.

The scheduling problems considered in this paper always
assume that the resources are available and there is no
deadlock issue. This may not be sensible in the reality.
Owing to the competition for limited resources among sev-
eral processes, the entire system might get stuck at deadlock.

@ Springer

For this issue, we may refer to Hu and Li (2009a,b,c, 2010)
and Hu et al. (2011). Therefore, in the future research, we
can consider the scheduling problems with deadlock issue.

Lee (2004), Toksari and Giiner (2010), Wang (2007),
Wang and Cheng (2007) and Wu et al. (2012) simultane-
ously considered the deteriorating jobs and learning effects
in scheduling problems. In the future research, we can also
study the multi-machine scheduling problems by simul-
taneously considering the deteriorating jobs and the job-
dependent and machine-dependent learning factors. We can
also impose the job-dependent and machine-dependent learn-
ing factors upon the different models reviewed in second sec-
tion in the future research. These considerations may be the
challenge topic.

On the other hand, in the future research, it is also pos-
sible to propose different variants of the prototype of the
multi-machine scheduling problems with job-dependent and
machine-dependent learning effects in third section. For
example, we may study the job-dependent and machine-
dependent learning factors upon the sum-of-processing-time
based problems. More precisely, we can extend (9) to the
following formula

r—1 Sij
pijin =pij {4+ D pwr |
k=1

where ¢;; is defined in (23). We can also extend (10) to the
following formula

r—1
pijin = pij - fi | D P) - i ().
k=1

(29)

where the functions f;; and g;; satisfy some suitable condi-
tions, and play the same roles as parameter ¢;;. In general,
we can extend (11) to the following formula

r—1
pijirni = pij - fi | D B puar)
k=1
which also generalizes the setting in (29).

As we have mentioned before, the multi-machine schedul-
ing problems by simultaneously considering the job-depe-
ndent and machine-dependent learning factors proposed in
this paper is complicated. In the future research, we shall
also develop some other more efficient heuristic algorithms
to solve this complicated problem.

References

Arnaout, J.-P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony
optimization algorithm to minimize the makespan on unrelated paral-
lel machines with sequence-dependent setup times. Journal of Intel-
ligent Manufacturing, 21, 693-701.

g Journal: 10845-JIMS MS: 0827 [JTYPESET [DISK [_]LE []CP Disp.:2013/8/17 Pages: 11 Layout: Large

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779
780
781
782

Author Proof

783
784
785
786

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

J Intell Manuf

Bachman, A., & Janiak, A. (2004). Scheduling jobs with position-
dependent processing times. Journal of Operational Research Soci-
ety, 55, 257-264.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing
and optimization. ORSA Journal on Computing, 6, 154—160.

Biskup, D. (1999). Single-machine scheduling with learning consider-
ations. European Journal of Operational Research, 115, 173-178.

Cheng, T. C. E., Wu, C. C., & Lee, W. C. (2008). Some schedul-
ing problems with sum-of-processing-times-based and job-position-
based learning effects. Information Sciences, 178, 2476-24877.

Cheng, T. C. E., & Wang, G. (2000). Single machine scheduling with
learning effect considerations. Annals of Operations Research, 98,
273-290.

Dorigo, M., & Stiitzle, T. (2004). Ant colony optimization. Cambridge:
MIT Press.

Eberhard, R. C., & Kennedy, J. (1995). A new optimizer using particle
swarm theory. In Proceedings of the sixth international symposium
on micro machine and human science, Nagoya, Japan (pp. 39—43).

Gonzalez, T., & Sahni, S. (1978). Flowshop and jobshop schedule: Com-
plexity and approximation. Operations Research, 26, 36-52.

Hu, H., & Li, Z. (2009a). Modeling and scheduling for manufacturing
grid workflows using timed Petri nets. The International Journal of
Advanced Manufacturing Technology, 42, 553-568.

Hu, H., & Li, Z. (2009b). Liveness enforcing supervision in video
streaming systems using siphons. Journal of Information Science
and Engineering, 25, 1863-1884.

Hu, H., & Li, Z. (2009c). Local and global deadlock prevention policies
for resource allocation systems using partially generated reachability
graphs. Computers and Industrial Engineering, 57, 1168—1181.

Hu, H., & Li, Z. (2010). Synthesis of liveness enforcing supervisor for
automated manufacturing systems. Journal of Intelligent Manufac-
turing, 21, 555-567.

Hu, H., Li, Z., & Al-Ahmari, A. (2011). Reversed fuzzy Petri nets
and their application for fault diagnosis. Computers and Industrial
Engineering, 60, 505-510.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220, 671-680.

Koulamas, C., & Kyparisis, G. J. (2007). Single-machine and two-
machine flowshop scheduling with general learning functions. Euro-
pean Journal of Operational Research, 178, 402—407.

Kuo, W.-H., & Yang, D.-L. (2006a). Single-machine group scheduling
with a time-dependent learning effect. Computers and Operations
Research, 33,2099-2112.

Kuo, W.-H., & Yang, D.-L. (2006b). Minimizing the total completion
time in a single-machine scheduling problem with a time-dependent
learning effect. European Journal of Operational Research, 174,
1184-1190.

Kuo, W.-H., & Yang, D.-L. (2006¢). Minimizing the makespan in a sin-
gle machine scheduling problem with a time-based learning effect.
Information Processing Letter, 97, 64—67.

Lai, P.-J., & Lee, W.-C. (2011). Single-machine scheduling with general
sum-of-processing time-based and position-based learning effects.
Omega, 39, 467-471.

Lai, P-J., & Wu, H.-C. (2008). Using genetic algorithms to solve
fuzzy flow shop scheduling problems based on possibility and neces-
sity measures. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 16, 409-433.

Lai, P.-J., & Wu, H.-C. (2009). Using ant colony optimization to mini-
mize the fuzzy makespan and total weighted fuzzy completion time in
flow shop scheduling problems. The International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 17, 559-584.

Lee, W. C. (2004). A note on deteriorating jobs and learning in single-
machine scheduling problems. International Journal of Business and
Economics, 3, 83-89.

Lee, W.-C., & Wu, C.-C. (2004). Minimizing total completion time in a
two-machine flowshop with a learning effect. International Journal
of Production Economics, 88, 85-93.

Lee, W.-C., Wu, C.-C., & Sung, H.-J. (2004). A bi-criterion single-
machine scheduling problem with learning considerations. Acta
Informatica, 40, 303-315.

Lee, W.-C., & Wu, C.-C. (2009). Some single-machine and m-machine
flowshop scheduling problems with learning considerations. Infor-
mation Sciences, 179, 3885-3892.

Mirsanei, H. S., Zandieh, M., Moayed, M. J., & Khabbazi, M. R.
(2011). A simulated annealing algorithm approach to hybrid flow
shop scheduling with sequence-dependent setup times. Journal of
Intelligent Manufacturing, 22, 965-978.

Moshieov, G. (2001). Scheduling problems with a learning effect. Euro-
pean Journal of Operational Research, 132, 687-693.

Moshieov, G. (2001). Parallel machine scheduling with a learning effect.
Journal of Operational Research Society, 52, 1165-1169.

Moshieov, G., & Sidney, J. B. (2003). Scheduling with general
job-dependent learning curves. European Journal of Operational
Research, 147, 665-670.

Moshieov, G., & Sidney, J. B. (2005). Note on scheduling with general
learning curves to minimize the number of tardy jobs. Journal of
Operational Research Society, 56, 110-112.

Nearchou, A. C. (2004). Flow-shop sequencing using hybrid simulated
annealing. Journal of Intelligent Manufacturing, 15, 317-328.

Solano-Charris, E. L., Montoya-Torres, J. R., & Paternina-Arboleda,
C. D. (2011). Ant colony optimization algorithm for a bi-criteria
2-stage hybrid flowshop scheduling problem. Journal of Intelligent
Manufacturing, 22, 815-822.

Speras, W. M. & DeJong, K. A. (1991). On the virtues of parameter-
ized uniform crossover. In: Proceedings of the fourth international
conference genetic algorithms (pp. 230-236).

Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2007). A
particle swarm optimization algorithm for makespan and total flow-
time minimization in the permutation flowshop sequencing problem.
European Journal of Operational Research, 177, 1930-1947.

Toksari, M. D., & Giiner, E. (2010). Parallel machine scheduling prob-
lem to minimize the earliness/tardiness costs with learning effect and
deteriorating jobs. Journal of Intelligent Manufacturing, 21, 843851.

Wang, J.-B. (2007). Single-machine scheduling problems with the
effects of learning and deterioration. Omega, 35, 397-402.

Wang, J.-B., & Xia, Z.-Q. (2005). Flow shop scheduling with a learning
effect. Journal of Operational Research Society, 56, 1325-1330.
Wang, X., & Cheng, T. C. E. (2007). Single-machine scheduling with
deteriorating jobs and learning effects to minimize the makespan.

European Journal of Operational Research, 178, 57-70.

Wu, C.-C. (2006). The development of a solution to the single-machine
total weighted completion time problem with a learning effect. Inter-
national Journal of Management, 23, 113-116.

Wu, C.-C., Lee, W.-C., & Wang, W.-C. (2007). A two-machine flow-
shop maximum tardiness scheduling problem with a learning effect.
International Journal of Advanced Manufacturing Technology, 31,
743-750.

Wu, W.-H., Cheng, S.-R., Wu, C.-C., & Yin, Y. (2012). Ant colony
algorithms for atwo-agent scheduling with sum-Of processing times-
based learning and deteriorating considerations. Journal of Intelli-
gent Manufacturing, 23, 1985-1993.

Yin, Y.-Q., Xu, D.-H., Sun, K.-B., & Li, H.-X. (2009). Some schedul-
ing problems with general position-dependent and time-dependent
learning effects. Information Sciences, 179, 2416-2425.

@ Springer

& | Journal: 10845-JIMS MS: 0827 [TYPESET []DISK [[]LE [JCP Disp.:2013/8/17 Pages: 11 Layout: Large ‘

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

